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We study a generalization of the classical stable matching problem that allows for cardinal
preferences (as opposed to ordinal) and fractional matchings (as opposed to integral). 
In this cardinal setting, stable fractional matchings can have much larger social welfare 
than stable integral ones. Our goal is to understand the computational complexity of 
finding an optimal (i.e., welfare-maximizing) stable fractional matching. We consider both 
exact and approximate stability notions, and provide simple approximation algorithms with 
weak welfare guarantees. Our main result is that, somewhat surprisingly, achieving better 
approximations is computationally hard. To the best of our knowledge, these are the first 
computational complexity results for stable fractional matchings in the cardinal model. En 
route to these results, we provide a number of structural observations that could be of 
independent interest.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The stable matching problem is one of the most extensively studied problems at the interface of economics and computer 
science [1–5]. The input to the problem consists of the preference lists of two sets of agents, commonly referred to as the 
men and the women. The goal is to find a stable matching, i.e., a matching in which no pair of man and woman prefer each 
other over their assigned partners.

While the problem was originally motivated by college admissions [1], its applicability has subsequently expanded to 
various other domains such as medical residency [6,7] and school choice [8]. In addition, the insights gained from the 
study of the stable matching problem, together with the development of computational tools and techniques in artificial 
intelligence, have shaped the design of modern two-sided matching platforms such as organ exchanges [9] and ridesharing 
platforms [10].

The standard formulation of the stable matching problem involves two important assumptions, namely that the matching 
is integral (i.e., two agents are either completely matched or completely unmatched) and that the agents have ordinal
preferences (typically in the form of rank-ordered lists). Although these assumptions suffice in a number of applications, 
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Fig. 1. An instance with cardinal preferences.

including those mentioned above, there are natural examples where they could be inadequate. For instance, consider a time-
sharing scenario [11] wherein a set of employees are matched with a set of supervisors. Assuming that each individual can 
spend one unit of time at work, an integral matching prescribes that every employee should work full time with a single 
supervisor. On the other hand, fractional matchings allow the employees to divide their time in working with multiple 
supervisors, making them a more natural modeling choice in such situations. Fractional matchings are also useful in the 
context of randomization, as they can be used to model lotteries over integral matchings [12–14].

In a similar vein, ordinal preferences, despite their simplicity and ease of elicitation, can often be quite restrictive. Indeed, 
in many real-world matching applications, the outcomes experienced by the participants are inherently cardinal in nature 
(e.g., wages in labor markets or quality of transplants in kidney exchange [15]). In such settings, it is decidedly more natural 
to model the intensity of preferences, as has been noted both in theory [16,17] as well as in lab experiments [18].

Motivated by these applications, we consider a generalization of the stable matching model that allows for fractional
matchings (as opposed to integral) and cardinal preferences (as opposed to ordinal). More concretely, we consider a setting 
in which the preferences are specified in terms of numerical utilities or valuations (for example, in the matching instance 
in Fig. 1, m1 values w1 at 0, and w1 values m1 at 3). A fractional matching is simply a convex combination of inte-
gral matchings, and an agent’s utility under a fractional matching is the appropriately weighted sum of its utilities under 
the constituent integral matchings. A fractional matching μ is stable if no pair of man and woman simultaneously derive 
greater utility in being integrally matched to each other than they do under μ [19,17]. Thus, for instance, in the employee-
supervisor example mentioned above, stability ensures that no employee-supervisor pair will abandon their time-sharing 
arrangements and instead prefer to work with each other full time.

The aforementioned generalization has clear merit in terms of social welfare: Stable solutions in the generalized model 
can have larger welfare than those in the standard model, as the following example illustrates.

Example 1. Consider the instance in Fig. 1 with three men m1, m2, m3 and three women w1, w2, w3. Among the six pos-
sible integral matchings, only two are stable, namely μ1 := {(m1, w3), (m2, w2), (m3, w1)} and μ2 := {(m1, w1), (m2, w3),

(m3, w2)}; indeed, μ1 and μ2 are the men-proposing and women-proposing Gale-Shapley matchings, respectively [1]. The 
social welfare (i.e., the sum of utilities of all agents) of these matchings is W(μ1) =W(μ2) = 7.

Define μ3 := {(m1, w1), (m2, w2), (m3, w3)}, and notice that W(μ3) = 8. Now consider a fractional matching μ := 1
2 μ2 +

1
2 μ3. The social welfare of μ is W(μ) = 1

2W(μ2) + 1
2W(μ3) = 15/2 > 7 = W(μ1) = W(μ2), which means that μ has a 

higher social welfare than any stable integral matching. Importantly, μ is a stable fractional matching. Indeed, in μ, the 
utilities of m1, m2, m3, w1, w2, and w3 are 0, 1/2, 3/2, 3, 3/2, and 1 respectively. Thus, for every man-woman pair, at least 
one of the two agents meets its utility threshold for that pair, implying that μ is stable.

Overall, the instance in Fig. 1 admits a stable fractional matching with strictly greater welfare than any stable integral 
matching.1 �

Starting with the seminal work of Gale and Shapley [1], an extensive literature has emerged over the years on algorithms 
for computing stable solutions, including ones that optimize a variety of objectives pertaining to fairness and economic effi-
ciency [20,21,4,22,23]. Many of these algorithms, however, are tailored to compute stable integral matchings. As Example 1
demonstrates, such algorithms could, in general, return highly suboptimal outcomes in our setting. Therefore, it becomes 
pertinent to understand the computational complexity of finding an “optimal” stable matching in the generalized model. 
Our work studies this question from the lens of the fundamental objective of social welfare, and asks the following natural 
question:

Can an (approximately) optimal stable fractional matching be efficiently computed?

1 Observe that the gain in social welfare of μ was achieved by including an unstable integral matching μ3 in its support. One could consider alternative 
notions such as ex-post stability [11] wherein the support consists only of stable integral matchings. We discuss this and various other stability notions 
in Appendix A, and find that insisting on a purely stable support results in significant welfare loss (Remark 3). In fact, there exists instances where the 
support of an optimal stable fractional matchings consists only of unstable integral matchings (Proposition 4).
2
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1.1. Our results and roadmap

We formalize the above question by defining the optimization problem Optimal Stable Fractional Matching. To motivate 
this problem, we strengthen the observation in Example 1 to show that the social welfare gap between the best stable 
fractional and the best stable integral matchings can be arbitrarily large. We show that the favorable welfare properties 
of stable fractional matchings come at the cost of limiting the algorithmic tools at our disposal. Specifically, we show 
that the set of stable fractional matchings can be non-convex (Proposition 3), and that, in the worst case, stable fractional 
matchings can have a large support (Theorem 3), thus prohibiting the use of support enumeration algorithms. Nevertheless, 
we present simple algorithms for Optimal Stable Fractional Matching with approximation ratio of 1 + σmax/σmin, where 
σmax and σmin represent the maximum and minimum positive valuation in the input instance, respectively (Theorem 5). For 
the variant Optimal ε-Stable Fractional Matching, where the stability constraints are relaxed by a multiplicative factor of 
(1 −ε), an embarrassingly simple algorithm computes 1/ε-approximate solutions (Theorem 6). We then proceed to our main 
results (Theorems 7 and 8), which show that these approximation guarantees are—somewhat surprisingly—almost the best 
achievable via polynomial-time algorithms (unless P = NP). To the best of our knowledge, these are the first computational 
complexity results for stable fractional matchings in the cardinal preferences model.

The rest of the paper is organized as follows. We present related work in the matching literature in Section 1.2. We 
continue in Section 2 with preliminary definitions and warm up with exponential-time algorithms that solve Optimal Stable 
Fractional Matching using linear programming. Section 3 presents the structural properties of (nearly)-optimal solutions 
of Optimal Stable Fractional Matching. Our algorithms are presented in Section 4, and our inapproximability results are 
presented in Section 5. Some proofs and additional material appear in the appendix.

1.2. Related work

The stable matching problem has been extensively studied for integral matchings. The universal existence of a stable 
integral matching [1] has led to considerable research on stable solutions that, in addition, optimize various measures of 
fairness or efficiency. A relevant example is that of optimizing the average rank of matched partners, which, in our model, 
corresponds to finding an optimal stable integral matching when the cardinal utilities are completely specified by the ordinal 
ranks (e.g., if an agent is ranked at position i, then it is valued at n + 1 − i). This problem is known to admit combinatorial 
polynomial-time algorithms [21,24]. Other examples of such problems include minimizing the difference between average 
ranks of matched partners of men and women [25], optimizing the rank of matched partner for the least well-off agent [20,
26,4], and maximizing (or minimizing) the cardinality of the matching [27,23,28].

A growing body of work in artificial intelligence and multiagent systems has studied variants of the stable matching 
problem motivated by practical considerations such as minimizing the amount of information exchange required in arriving 
at stable outcomes [29,30] or ensuring strategyproofness in many-to-one matchings with quota constraints [31,32]. Various 
other papers have used computational approaches such as SAT solving [33–35] and constraint programming [36–38] in 
developing practically efficient solutions to computationally hard variants of the problem, as well as in axiomatic study of 
matching procedures [39].

Stability has also been studied in the context of fractional matchings. Starting with the works of Vande Vate [40], Roth-
blum [41], and Roth et al. [11], there is now a well-developed literature on linear programming formulations of the stable 
matching problem [22,42,43]. This line of work has led to novel stability notions such as strong stability [11], ex-post stabil-
ity [11], and fractional stability [40], which are discussed further in Appendix A.2 A noteworthy difference with our work is 
that these notions have been studied with respect to purely ordinal preferences.

Turning to cardinal preferences, we note that the notions of exact and approximate stability studied by us (Definition 1) 
first appeared, to the best of our knowledge, in the work of Anshelevich et al. [19]. They focus on qualitative, rather than 
computational, questions such as analyzing the “price of anarchy” for integral stable matchings under various preference 
structures as well as its extensions to approximate stability.3 Pini et al. [17] study the same notion with the goal of comput-
ing integral stable matchings that, in addition, satisfy economic efficiency (in particular, Pareto optimality and its variants). 
They also study strategic aspects which are an exciting avenue for future research even in our model.

An interesting special case of our problem is when agents have symmetric preferences, i.e., for every (m, w) ∈ M × W , 
U (m, w) = V (m, w). Deligkas et al. [47] study this model in the context of integral matchings, and show that computing a 
welfare-maximizing integral stable matching is NP-hard under symmetric valuations. In general, stable fractional matchings 
can have much higher welfare compared to integral ones (Example 1), and thus it is not clear a priori whether the result 
of Deligkas et al. for integral matchings has any implications for stable fractional matchings. Nevertheless, as we show in 
Lemma 1 in Section 2.2, their result implies NP-hardness of Optimal Stable Fractional Matching. In comparison, our results 
in Section 5 on the hardness of approximation are much stronger and also apply to approximate stability.

2 The term “fractional stable matching” has been overloaded in the literature. For example, Teo and Sethuraman [22] use it to refer to a feasible solution 
of stable matching linear program, and Aharoni and Fleiner [44] and Biró and Fleiner [45] use it in the study of hypergraphic preference systems to refer 
to a slightly different solution concept. We refer the reader to [46] for a detailed overview of these notions.

3 The price of anarchy in this context is the worst-case multiplicative welfare gap between an optimal matching and an integral stable matching.
3
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Finally, we note that stable fractional matchings under cardinal preferences have been previously studied in economics 
literature [48–52]. Some of these works [49,50] consider much more general matching models such as matching with 
transfers, blocking coalitions of arbitrary size, non-linear utilities, etc. The focus in these papers is primarily on existential
questions (such as the existence of competitive equilibria) or on examining the logical relationship among various notions of 
stability and economic efficiency. Some of these models are strict generalizations of ours, and therefore computational hard-
ness results in our model readily extend to these more general settings. Whether one can obtain stronger inapproximability 
results for these models is an interesting avenue for future research.

2. Preliminaries

An instance of Stable Matching problem with Cardinal preferences (SMC) is given by the tuple 〈M, W , U , V 〉, where M :=
{m1, . . . , mn} and W := {w1, . . . , wn} denote the set of n men and n women, respectively, and U and V are n × n matrices 
of non-negative rational numbers that specify the valuations of the agents. Specifically, U (m, w) is the value derived by man 
m from his match with woman w , and V (m, w) is the value derived by woman w from her match with man m. Many of 
our results will focus on two special classes of valuations, namely binary (where U , V ∈ {0, 1}n×n) and ternary valuations 
(where U , V ∈ {0, 1, α}n×n for some α > 1).

We will often describe an SMC instance using its graph representation. An instance I = 〈M, W , U , V 〉 can be represented 
as a bipartite graph with vertex sets M and W , and an edge for every pair (m, w) ∈ M × W such that at least one of 
U (m, w) > 0 or V (m, w) > 0 holds. Each edge (m, w) in this graph has two valuations associated with it, namely U (m, w)

and V (m, w).
A fractional matching μ : M × W → R≥0 is an assignment of non-negative weights to all man-woman pairs such that ∑

w∈W μ(m, w) ≤ 1 for each m ∈ M and 
∑

m∈M μ(m, w) ≤ 1 for each w ∈ W . A fractional matching μ is said to be complete
if 

∑
w∈W μ(m, w) = 1 for each man m ∈ M and 

∑
m∈M μ(m, w) = 1 for each woman w ∈ W . An integral matching μ is a 

fractional matching with weights μ(m, w) ∈ {0, 1} for every pair (m, w). With slight abuse of notation, we sometimes view 
an integral matching μ as a set of pairs and write (m, w) ∈ μ in place of μ(m, w) = 1. Also, unless stated otherwise, we 
will assume that any fractional/integral matching is complete.

It is well-known, and follows from the Birkhoff-von Neumann (BvN) theorem, that a (complete) fractional matching μ
can be written as a convex combination of k = O(n2) integral matchings μ(1), μ(2), . . . , μ(k) so that for every pair (m, w) ∈
M × W , we have

μ(m, w) =
k∑

j=1

λ j · μ( j)(m, w),

where λ j > 0 for all j ∈ {1, . . . , k} and 
∑k

j=1 λ j = 1. The set of integral matchings {μ(1), . . . , μ(k)} is called the support of 
the fractional matching μ. Note that the support need not be unique.

We proceed with the formal definitions of stability and approximate stability, which, in turn, depend on the util-
ity derived by agents in a fractional matching. In particular, the utility derived by the man m in μ is given by 
um(μ) := ∑

w∈W U (m, w)μ(m, w), and the utility derived by the woman w is given by v w(μ) := ∑
m∈M V (m, w)μ(m, w).

Definition 1 (Stability [19,17]). Given a fractional matching μ, a man-woman pair (m, w) is said to be a blocking pair if 
um(μ) < U (m, w) and v w(μ) < V (m, w). A fractional matching μ is stable if there are no blocking pairs, i.e., for each 
(m, w) ∈ M × W , either um(μ) ≥ U (m, w) or v w(μ) ≥ V (m, w).

Thus, under a stable fractional matching, no pair of man and woman can simultaneously improve by breaking away from 
the fractional matching and instead being integrally matched with each other. This notion of deviation is also reasonable 
from the viewpoint of bounded rationality, as agents only form blocking coalitions of size two, and only deviate to an 
integral matching between the members of the coalition.

Definition 2 (ε-Stability [19]). Given any ε ∈ [0, 1) and a fractional matching μ, a man-woman pair (m, w) is said to be 
ε-blocking if um(μ) < (1 − ε)U (m, w) and v w(μ) < (1 − ε)V (m, w); otherwise, the pair is said to be ε-stable. A fractional 
matching μ is ε-stable if all pairs are ε-stable.

Thus, a 0.01-stable fractional matching is one in which, for every man-woman pair, at least one of the two agents already 
receives (at least) 99% of the utility that he or she would receive by being integrally matched with the other. Note that a 
stable fractional matching is also ε-stable for every ε ≥ 0.

Notice that Definitions 1 and 2 entail that agents in a blocking pair prefer to switch to an integral match with each other. 
One could also consider an alternative formulation wherein the agents merely prefer to increase their mutual fractional 
engagement, possibly at the expense of weakening other less preferred matches. This is precisely the notion of strong 
stability (see Appendix A for the definition) which has been studied in the context of ordinal preferences [11,46]. However, 
4
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as we note in Remark 3 in Appendix A, a strongly stable fractional matching can be strictly suboptimal in terms of social 
welfare, which further justifies the consideration of the stability notion in Definition 1.

The next statement follows from the seminal result of Gale and Shapley [1].

Proposition 1. Given any SMC instance I , a stable fractional matching μ for I always exists and can be computed in polynomial time.

Proposition 1 was originally proven in [1] in the standard stable matching model with ordinal preferences and integral 
matchings. It is easy to see that given any SMC instance I , if an integral matching μ is stable for an ordinal instance derived 
from I (where the ordinal preferences of each agent are consistent with its valuations, breaking ties arbitrarily), then it is 
also stable for the original instance I .

Next, we define social welfare, which is a measure of the efficiency of a fractional matching.

Definition 3 (Social welfare). Given an SMC instance 〈M, W , U , V 〉 and a fractional matching μ, the social welfare of μ is 
defined as

W(μ) :=
∑

m∈M

um(μ) +
∑

w∈W

v w(μ) =
∑

m∈M

∑
w∈W

(U (m, w) + V (m, w))μ(m, w).

An optimal matching is one with the highest social welfare among all fractional matchings. It follows from the BvN de-
composition that an optimal matching is, without loss of generality, integral. Similarly, an optimal stable fractional matching 
(respectively, optimal ε-stable fractional matching) is one with the highest social welfare among all stable (respectively, all ε-
stable) fractional matchings. We will use Optimal Stable Fractional Matching and Optimal ε-Stable Fractional Matching

to refer to the corresponding optimization problems.
We will also discuss stable fractional matchings that are approximately optimal.

Definition 4 (ρ-efficiency). For ρ ∈ (0, 1], the term ρ-efficient will refer to a stable (respectively, ε-stable) fractional matching 
with welfare at least ρ times the welfare of the optimal stable (respectively, ε-stable) fractional matching. That is, μ is a 
ρ-efficient stable fractional matching if it is stable (respectively, ε-stable) and W(μ) ≥ ρW(μ∗), where μ∗ is an optimal 
stable (respectively, ε-stable) fractional matching.

Thus, an optimal stable (or ε-stable) fractional matching is 1-efficient.

2.1. Computing optimal stable fractional matchings

We will now discuss two exponential-time algorithms for Optimal Stable Fractional Matching. The first algorithm uses 
the following mixed integer linear program (OPT-Stab):

(OPT-Stab)

maximize
∑

m∈M

um +
∑

w∈W

v w

subject to um ≥ U (m, w)y(m, w) ∀m ∈ M, w ∈ W (1)

v w ≥ V (m, w)(1 − y(m, w)) ∀m ∈ M, w ∈ W (2)

um =
∑

w∈W

U (m, w)μ(m, w) ∀m ∈ M (3)

v w =
∑

m∈M

V (m, w)μ(m, w) ∀ w ∈ W (4)

∑
w∈W

μ(m, w) ≤ 1 ∀m ∈ M (5)

∑
m∈M

μ(m, w) ≤ 1 ∀ w ∈ W (6)

μ(m, w) ≥ 0 ∀m ∈ M, w ∈ W (7)

y(m, w) ∈ {0,1} ∀m ∈ M, w ∈ W (8)

The non-negative weights μ(m, w) of man-woman pairs as well as the utilities um := um(μ) and v w := v w(μ) of the 
agents (set in equalities (3) and (4)) are the fractional variables of (OPT-Stab). The binary variables y(m, w) encode the 
stability requirements for pair (m, w) in constraints (1) and (2). Indeed, by setting y(m, w) to 1 or 0, we can require 
5
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either um(μ) ≥ U (m, w) or v w(μ) ≥ V (m, w). Constraints (5) and (6) ensure feasibility. By enumerating over all possible 
combinations of values for the binary variables y(m, w) for (m, w) ∈ M × W , we get 2n2

different linear programs, and at 
least one of them must have the optimal stable fractional matching as its optimal solution.

Our second algorithm is slightly faster and solves at most O(nn) linear programs. It exploits the following linear pro-
gram (OPT-Thresh), which is defined using non-negative constants θm for m ∈ M and θw for w ∈ W , which we call utility 
thresholds.

(OPT-Thresh)

maximize
∑

m∈M

um +
∑

w∈W

v w

subject to um ≥ θm ∀m ∈ M (9)

v w ≥ θw ∀ w ∈ W (10)

um =
∑

w∈W

U (m, w)μ(m, w) ∀m ∈ M (11)

v w =
∑

m∈M

V (m, w)μ(m, w) ∀ w ∈ W (12)

∑
w∈W

μ(m, w) ≤ 1 ∀m ∈ M (13)

∑
m∈M

μ(m, w) ≤ 1 ∀ w ∈ W (14)

μ(m, w) ≥ 0 ∀m ∈ M, w ∈ W (15)

When all utility thresholds are set to zero, the solution of (OPT-Thresh) is an optimal (i.e., welfare-maximizing) fractional 
matching. Using (OPT-Thresh) to maximize social welfare under stability constraints is more challenging. We say that a set of 
utility thresholds is stability-preserving if for every pair of agents m ∈ M and w ∈ W , either θm ≥ U (m, w) or θw ≥ V (m, w). 
Note that any fractional matching μ that is feasible for (OPT-Stab) is also feasible for (OPT-Thresh) for some stability-
preserving set of utility thresholds (in particular, set the threshold of an agent equal to its utility under μ). Conversely, any 
fractional matching μ that is feasible for (OPT-Thresh) with some set of stability-preserving utility thresholds is also feasible 
for (OPT-Stab).

One could now adopt the following strategy to solve Optimal Stable Fractional Matching: First, enumerate all O(nn)

tuples of utility thresholds (θm1 , . . . , θmn ) with θm ∈ {U (m, w) : w ∈ W } for every man m ∈ M . Next, for every choice of 
(θm1 , . . . , θmn ), solve (OPT-Thresh) after appropriately setting (θw1 , . . . , θwn ) where θw ∈ {V (m, w) : m ∈ M} for all w ∈ W , so 
that the set of utility thresholds is stability-preserving. Among these solutions, the fractional matching with highest social 
welfare will be the solution of Optimal Stable Fractional Matching. We note that (OPT-Thresh) resembles the integer 
programming formulations with cut-off variables in other works [53,54].

2.2. The case of symmetric valuations

As mentioned previously in Section 1.2, a result by Deligkas et al. [47] implies NP-hardness of the problem of computing 
an optimal stable integral matching on SMC instances. The construction of Deligkas et al. involves a restricted class of SMC
instances wherein the agents have symmetric (i.e., U = V ) and ternary valuations in {0, 1, α} with α ∈ (1, 2).

Proposition 2. Computing an optimal stable integral matching is NP-hard even for SMC instances with symmetric ternary valuations.

Our next result (Lemma 1) shows that for these SMC instances, the optimal stable fractional matching is, without loss of 
generality, integral. Consequently, the result in [47] implies NP-hardness of Optimal Stable Fractional Matching.

Lemma 1. Let I be an SMC instance with symmetric and ternary valuations, and let μ∗ be an optimal stable fractional matching for 
I . Then, there exists a stable integral matching μs such that W(μs) =W(μ∗).

Proof. Consider an optimal stable fractional matching μ∗ that is not integral (i.e., has support of size at least two), and let 
μ be any integral matching in any support of μ∗ . We will show that μ is a stable integral matching. This would imply that 
all matchings in the support of μ∗ are optimal stable integral matchings, as desired.

Assume, for contradiction, that μ is not stable, and let (m, w) be a blocking pair in μ. Then, because of symmetry, either 
U (m, w) = V (m, w) = 1 or U (m, w) = V (m, w) = α.
6
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Fig. 2. The SMC instance used in the proof of Theorem 1. As a convention, in graph representations where the two sides of the bipartition do not appear 
as left and right, we use circles to represent men and diamonds to represent women.

Suppose that U (m, w) = V (m, w) = 1. Then, either both m and w are unmatched in μ, or any pair (m′, w ′) in μ with 
either m′ = m or w ′ = w satisfies U (m′, w ′) = V (m′, w ′) = 0. By replacing such pairs with (m, w) in μ (and, subsequently, 
in the support of μ∗), we get a stable fractional matching with a higher welfare than μ∗ , contradicting its optimality.

Now suppose that U (m, w) = V (m, w) = α. Then, either both m and w are unmatched in μ, or any pair (m′, w ′) in μ
with either m′ = m or w ′ = w satisfies U (m′, w ′) = V (m′, w ′) ∈ {0, 1}. However, since μ is in the support of μ∗ (i.e., with 
strictly positive weight) and all valuations are less than or equal to α, the utilities of both m and w in μ∗ will be strictly 
smaller than α, contradicting the stability of μ∗ . �

From Lemma 1 and Proposition 2,we immediately have the following:

Corollary 1. Optimal Stable Fractional Matching is NP-hard.

3. Structural properties

In this section, we present several observations about the structure of optimal and nearly-optimal stable fractional match-
ings. We begin by considerably strengthening our observation in Example 1 regarding the welfare gap between stable 
fractional and stable integral matchings.

Theorem 1. For every δ > 0 and α ≥ 2, there exists an SMC instance with ternary valuations in {0, 1, α} and an optimal stable 
fractional matching μ∗ such that any stable integral matching μs satisfies W(μs) ≤ (

α − 1
2 − δ

)−1 W(μ∗).

Proof. Consider the SMC instance shown in Fig. 2, which, for some k (to be determined later), consists of man mi and 
woman wi for all i ∈ {1, . . . , k}, men e1

i and e2
i for all i ∈ {1, . . . , k − 1}, woman f 1

i for all i ∈ {2, . . . , k − 1}, man e3
i and 

women f 2
i and f 3

i for all i ∈ {2, . . . , k}.
To specify the valuations, we will use the following notation: For any a, b ≥ 0, we will say that a man-woman pair 

(m, w) is an “a—b” edge if U (m, w) = a and V (m, w) = b. In the instance in Fig. 2, the pairs {(mi, wi)}k
i=1, {(mi, f 3

i )}k
i=2, 

and {(e1
i , f

1
i )}k−1

i=2 are 0—α edges, the pairs {(mi+1, wi)}k−1
i=1 , {(e2

i , wi)}k−1
i=1 , and {(e3

i , f
2
i )}k

i=2 are α—0 edges, and the pairs 
{(e1

i , wi)}k−1
i=1 and {(mi, f 2

i )}k
i=2 are 1—1 edges. All other pairs are 0—0 edges. We remark that a slightly modified version of 

the instance in Fig. 2 will be used again later in the proof of Theorem 7 (refer to the accumulator gadget in Fig. 7a).
Consider a stable integral matching μs . Since the pair (e1

1, w1) is a 1—1 edge, the stability requirement dictates that 
either (m1, w1) or (e1

1, w1) is contained in μs . Either of these pairs contribute at most α to the social welfare (recall that 
α ≥ 2). Additionally, since μs is an integral matching, we get that μs(m2, w1) = 0. This, in turn, forces the pair (m2, f 2

2 ) to 
be contained in μs as well (or, otherwise, both m2 and f 2

2 will have zero utility and violate stability). Continuing in this 
manner, we observe that the stability requirement for the pairs {(mi, f 2

i )}k
i=2 and {(e1

i , wi)}k−1
i=2 will force these pairs to be 

contained in μ as well. Each of these pairs contributes 2 to the social welfare, and thus, W(μs) ≤ 4k − 6 + α.
Now define a stable fractional matching μ as follows: Set μ(mi, wi) = 1/α for all i ∈ {1, . . . , k}, μ(e2

i , wi) = 1 − 2/α, 
μ(mi+1, wi) = 1/α, μ(e1

i , wi) = 0 for all i ∈ {1, . . . , k − 1}, μ(mi, f 2
i ) = 0, μ(mi, f 3

i ) = 1 − 2/α, μ(e3
i , f

2
i ) = 1 for all i ∈

{2, . . . , k}, and μ(e1
i , f

1
i ) = 1, for all i ∈ {2, . . . , k − 1}. (A similar matching will be used later in the proof of Lemma 5.) It is 

easy to verify that the social welfare of μ is W(μ) = 4k(α − 1/2) − 5α + 3. Furthermore, for each i ∈ {1, . . . , k}, both man 
mi and woman wi have utility 1 in μ (i.e., umi (μ) = v wi (μ) = 1). Every 1—1 edge includes one of these agents, and these 
are the only edges that need to be checked for stability (any other pair has at least one agent with a valuation of zero and, 
7
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Fig. 3. The SMC instances used in the proofs of Propositions 3 and 4.

hence, the stability constraint for those pairs is trivially satisfied). Therefore, μ is stable. The theorem follows by setting k
to be sufficiently large; specifically, for any given δ > 0, choosing k ≥ 1

4 ·
(

6 − α + α2−23α/2+6
δ

)
gives the desired bound. �

We emphasize that Theorem 1 is a positive result as it establishes that stable fractional matchings can have much higher 
welfare than their integral counterparts, and highlights the importance of Optimal Stable Fractional Matching.

Our next observation (Proposition 3) shows that the set of stable fractional matchings can be non-convex even for binary 
valuations. Interestingly, this does not prove to be a barrier in efficiently solving Optimal Stable Fractional Matching in 
this setting (see Theorem 4 in Section 4).

Proposition 3. There exists an SMC instance with binary valuations for which the set of stable fractional matchings is non-convex.

Proof. Consider the instance I = 〈M, W , U , V 〉 with three men m1, m2, m3 and three women w1, w2, w3, whose graph rep-
resentation and agent valuations are shown in Fig. 3a. Consider the integral matchings μ(1) := {(m1, w3), (m2, w1), (m3, w2)}
and μ(2) := {(m1, w2), (m2, w3), (m3, w1)}. It is easy to verify that both μ(1) and μ(2) are stable for I . However, the frac-
tional matching μ := 0.5μ(1) +0.5μ(2) is not stable since (m2, w2) is a blocking pair; indeed, 0.5 = um2 (μ) < U (m2, w2) = 1
and 0.5 = v w2 (μ) < V (m2, w2) = 1. �
Remark 1. A follow-up work to the conference version of our paper has shown that non-convexity also holds for strict 
preferences [55].

Remark 2. It is worth comparing the non-convexity results in Proposition 3 and Remark 1 with similar results for other 
stability notions. In particular, Aziz and Klaus [46, Theorem 1] have shown that the set of strongly stable matchings (see 
Appendix A for the definition) can be non-convex. In Appendix B, we revisit the counterexample used in their proof, which is 
stated in terms of ordinal preferences, and show that there exists a realization of cardinal preferences consistent with their 
instance such that the relevant convex combination of (strongly) stable matchings is still stable. Thus, the non-convexity 
result of Aziz and Klaus [46] for strong stability does not imply the same for the set of stable matchings.

The structure of stable fractional matchings becomes even more interesting (and, as we will see in Section 5, also com-
putationally unwieldy) when we move to ternary valuations. It turns out that the support of a stable fractional matching can 
comprise entirely of unstable integral matchings (Proposition 4), and its size can grow linearly with the input (Theorem 3). 
These observations pose major limitations on the set of algorithmic tools at our disposal.

Proposition 4. There exists an SMC instance with ternary valuations and a stable fractional matching μ such that every integral 
matching in any support of μ is unstable.

Proof. Consider the SMC instance I = 〈M, W , U , V 〉 with three men and three women shown in Fig. 3b. The parameter 
α ≥ 3 is a constant. There are six different perfect integral matchings:

• Matching μ(1) , which consists of pairs (m1, w1), (m2, w2), and (m3, w3) and has a social welfare of 6. It is easy to 
verify that this is the unique stable integral matching. Also, any subset of μ(1) is not stable as the pair that is missing 
from μ(1) will be blocking.

• Matching μ(2) , which consists of pairs (m1, w2), (m2, w3), and (m3, w1) and has a social welfare of 2α. The matching 
is not stable since the pair (m1, w1) is blocking.

• Matching μ(3) , which consists of pairs (m1, w3), (m2, w1), and (m3, w2) and has a social welfare of 2α. It is not stable 
since (m2, w2) is blocking.

• Matching μ(4) , which consists of pairs (m1, w1), (m2, w3), and (m3, w2) and has a social welfare of α + 2. It is not 
stable since (m3, w3) is blocking.
8
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Fig. 4. Subfigure (a) illustrates the graph representation of the SMC instance In described in the proof of Theorem 3 for n = 5. Subfigure (b) shows the 
matching μopt . Subfigures (c), (d), and (e) show the matchings μ(1) , μ(2) , and μ(3) , respectively. Dashed lines indicate zero-valuation pairs that do not 
appear in the graph representation.

• Matching μ(5) , which consists of pairs (m1, w3), (m2, w2), and (m3, w1) and has a social welfare of 2α + 2. It is not 
stable since (m1, w1) is blocking.

• Matching μ(6) , which consists of pairs (m1, w2), (m2, w1), and (m3, w3) and has a social welfare of α + 2. It is not 
stable since the pair (m2, w2) is blocking.

Consider the matching μ := 1
α(α−1)

· μ(2) + 1
α · μ(3) + α−2

α−1 · μ(5) . It is easy to verify that μ is stable. Indeed, the utilities 
of the agents in μ are given by um1 (μ) = 0, um2 (μ) = 1, um3 (μ) = α−1, v w1 (μ) = 1, v w2 (μ) = α−2

α−1 and v w3 (μ) = α − 1
α−1 . 

Notice that only the pairs (m1, w1), (m2, w2), and (m3, w3) need to be checked for stability. For each of these pairs, at least 
one of the agents has a utility of at least 1 in μ, implying that μ is stable. Finally, notice that μ(m1, w1) = 0, which means 
that the unique stable integral matching μ(1) cannot occur in any support of μ. �

We remark that with some extra work, one can show that the matching μ in the proof of Proposition 4 is the unique 
optimal stable fractional matching.

One might wonder whether the support of an optimal stable fractional matching always consists of an optimal in-
tegral matching. This turns out to not be the case, as illustrated by the following instance: Consider two men m1, m2

and two women w1, w2 with valuations given by U =
[

2 0
1 0

]
and V =

[
0 0
1 2

]
. The unique optimal integral matching is 

{(m1, w1), (m2, w2)} while the unique optimal stable fractional matching is {(m1, w2), (m2, w1)}.
As mentioned previously in Section 2, a (stable) fractional matching is the convex combination of at most n2 integral 

ones. Theorem 2 provides a stronger bound on the support size of an optimal stable fractional matching.

Theorem 2. Given any SMC instance I , there exists an optimal stable fractional matching for I with at most 4n integral matchings in 
its support.

Proof. Let μ∗ be an optimal stable fractional matching for I . Recall from Section 2.1 that μ∗ solves the program (OPT-
Thresh) for some set of stability-preserving utility thresholds. Observe that (OPT-Thresh) has n2 free variables (we ignore 
here the 2n variables um for m ∈ M and v w for w ∈ W , which depend on the remaining ones according to constraints (11)
and (12)). Without loss of generality, μ∗ is an optimal extreme point solution of (OPT-Thresh). That is, when (OPT-Thresh) is 
instantiated for μ∗ , n2 linearly independent inequality constraints become tight. Among them, at most 4n can correspond to 
the sets of constraints (9), (10), (13), and (14). The remaining ones must correspond to the set of constraints (15), implying 
that at least n2 − 4n free variables will be equal to zero. Thus, μ∗ can assign positive weights to at most 4n man-woman 
pairs and, consequently, can have at most 4n integral matchings in its support. �

Next we show that the bound in Theorem 2 is tight up to a constant factor.

Theorem 3. For every ρ ∈ (0, 1], there exists a family of SMC instances with ternary valuations for which any support of a ρ-efficient 
stable fractional matching consists of 	(ρn) integral matchings.

Proof. Consider a family of SMC instances In = 〈M, W , U , V 〉 with M = {m1, . . . , mn} and W = {w1, . . . , wn}, where n is 
odd. Let α be such that α > max

{
n + 2, 2n

ρ(n−1)

}
. The (ternary) valuations of the agents are defined as follows: For each 

i ∈ {1, 2, . . . , n}, U (mi, wi) = V (mi, wi) = 1. For each i ∈ {1,2, . . . , n−1
2 }, U (m2i, w1) = U (m2i+1, w2i) = V (m2i, w2i+1) = α

and V (m2i, w1) = V (m2i+1, w2i) = U (m2i, w2i+1) = 0. Finally, U (mn, w1) = 0 and V (mn, w1) = α. For all remaining pairs 
(m, w) ∈ M × W , U (m, w) = V (m, w) = 0. Fig. 4a illustrates the SMC instance I5.

Define μopt := {(m1, w1)} ∪ {
(m2i, w2i+1), (m2i+1, w2i) : i ∈ {1,2, . . . , n−1

2 }} (see Fig. 4b). We also define a number of 
other integral matchings obtained by modifying μopt, as follows: For all i ∈ {1, 2, . . . , n−1 }, the matching μ(i) (see 
2

9
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Figs. 4c and 4d) is the integral matching which is obtained from μopt by replacing {(m1, w1), (m2i, w2i+1)} with 
{(m1, w2i+1), (m2i, w1)}, i.e.,

μ(i) := {
(m1, w2i+1) ∪ (m2i, w1) ∪ (m2i+1, w2i) ∪ {(m2
, w2
+1) ∪ (m2
+1, w2
)}
∈{1,2,..., n−1

2 }\{i}
}
.

Also, the matching μ
(

n+1
2

)
(see Fig. 4e) is the integral matching obtained from μopt by replacing {(m1, w1), (mn, wn−1)}

with {(m1, wn−1), (mn, w1)}, i.e.,

μ

(
n+1

2

)
:= {

(m1, wn−1) ∪ (mn−1, wn) ∪ (mn, w1) ∪ {(m2
, w2
+1) ∪ (m2
+1, w2
)}
∈{1,2,..., n−3
2 }

}
.

Now, consider the fractional matching μ := ∑ n+1
2

i=1
1
α μ(i) + (

1 − n+1
2α

)
μopt. Since α > n + 2 > n+1

2 , μ is well-defined and 
has the matchings μopt and μ(i) for all i ∈ {

1, . . . , n+1
2

}
in its support. Notice that W(μopt) = (n − 1)α + 2 and W(μ(i)) =

(n − 1)α for all i ∈ {1,2, . . . , n+1
2 }. Thus, W(μ) > (n − 1)α.

It can be verified that μ is stable. Indeed, we only need to check the blocking condition for the pairs (mi , wi) with 
i ∈ {1,2, . . . ,n}. We have that v w1 (μ) ≥ 1 (since μ( n+1

2 ) has weight 1
α in μ and V (mn, w1) = α), um2i (μ) ≥ 1 for each 

i ∈ {1,2, . . . , n−1
2 } (since μ(i) has weight 1

α in μ and U (m2i, w1) = α), and v w2i+1 (μ) ≥ 1 for each i ∈ {1,2, . . . , n−1
2 } (since 

μ(i) has weight 1
α in μ and V (m2i, w2i+1) = α). The welfare of the optimal stable fractional matching must therefore be at 

least W(μ), and thus strictly greater than (n − 1)α.
We now claim that any ρ-efficient stable fractional matching μ′ satisfies μ′(mn, w1) > 0. Indeed, assuming otherwise 

that μ′(mn, w1) = 0, the only pair that can give positive utility to man m1 and woman w1 is (m1, w1). Hence, we must 
also have μ′(m1, w1) = 1, and, as a result, μ′(m2i, w1) = 0 for all i ∈ {

1,2, . . . , n−1
2

}
. Then, the only pair that can give 

positive utility to man m2i and woman w2i is (m2i, w2i), and hence, it must also be that μ′(m2i, w2i) = 1. Consequently, 
the only pair that can give positive utility to man m2i+1 and woman w2i+1 is (m2i+1, w2i+1) and, hence, we must have 
μ′(m2i+1, w2i+1) = 1. The welfare of matching μ′ would then be 2n, which is less than ρ(n − 1)α by the assumed bound 
on α. In other words, the welfare of μ′ would be less than ρ times the welfare of the stable fractional matching μ, 
contradicting the assumption that μ′ is ρ-efficient.

The final step in the proof involves showing that for any stable fractional matching μ′ with support of size at most 
n−1

2 ρ , we must have W(μ′) < ρ(n − 1)α; the desired bound on the support size would then follow from the contrapositive. 
Let T := {

i ∈ {
1,2, . . . n−1

2

} : μ′(m2i, w1) > 0
}

, and T := {
1,2, . . . n−1

2

} \ T . Since μ′ has support of size at most n−1
2 ρ and 

μ′(mn, w1) > 0, it holds that |T | ≤ n−1
2 ρ − 1.

For every i ∈ T , the agents m2i , w2i , m2i+1, and w2i+1 can together contribute at most 2α to the welfare. On the other 
hand, when i ∈ T , we have μ′(m2i, w1) = 0, and the only pair that can give positive utility to man m2i and woman w2i is 
(m2i, w2i). Therefore, we must have that μ′(m2i, w2i) = 1. Consequently, the only pair that can give positive utility to man 
m2i+1 and woman w2i+1 is (m2i+1, w2i+1), and it follows that μ′(m2i+1, w2i+1) = 1. Therefore, when i ∈ T , the agents m2i , 
w2i , m2i+1, and w2i+1 can together contribute at most 4 to the welfare. Taking the possible contribution of pair (m1, w1)

into account, we have that

W(μ′) ≤ 2 + 2α|T | + 4|T | = 2n + (2α − 4)|T |
≤ 2n + ρ(n − 1)α − 2α − 2(n − 1)ρ + 4 < ρ(n − 1)α.

The equality follows from the definition of T , the second inequality follows from the bound on |T | above, and the third one 
from the definition of α. This completes the proof of Theorem 3. �

Theorem 3 has an interesting algorithmic implication. The fact that the support size can be large even for approximately 
optimal solutions suggests that a support enumeration strategy—which has proven useful in other economic problems [56,
57]—will be strictly more demanding than any of the MILP-based approaches in Section 2.1. Specifically, a brute force 
enumeration of all subsets of 	(ρn) matchings requires 	((n!)ρn) ≈ 	(nρn2

) time. By contrast, the MILPs (OPT-Stab) and 
(OPT-Thresh) described in Section 2.1 require O(2n2

) and O(nn) time, respectively. A similar comparison can be made for 
optimal ε-stable fractional matchings. Interestingly, as we will show in Section 4, an ε-stable fractional matching of small
support can be easily computed, and provides nearly the best approximation ratios achievable by efficient algorithms (under 
standard complexity-theoretic assumptions).

4. Algorithmic results

We begin the discussion of our algorithmic results with binary valuations. In this setting, Optimal Stable Fractional 
Matching reduces to computing a maximum weight matching on a specific weighted graph associated with the given 
instance.
10
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Theorem 4. Given an SMC instance I = 〈M, W , U , V 〉 with binary valuations, an optimal stable fractional matching for I is, without 
loss of generality, integral, and can be computed in polynomial time.

Proof. Let G be the graph representation of I . We assign to each edge (m, w) in G a weight γ (m, w), as follows:

γ (m, w) =

⎧⎪⎨
⎪⎩

2 + 1
n2 if U (m, w) = V (m, w) = 1,

1 if U (m, w) = 1, V (m, w) = 0 or U (m, w) = 0, V (m, w) = 1,

0 otherwise.

Thus, for any integral matching μ in G , if nμ denotes the number of agents (men and women) with utility 1 in the SMC
instance I , then nμ ≤ ∑

(m,w)∈μ γ (m, w) < nμ + 1.
Let μ be a maximum weight matching in G . Note that μ can be computed in polynomial time and is, without loss 

of generality, integral. Also, it follows from the above inequality that μ is an optimal matching for I . We will now argue 
that μ is stable. Indeed, assuming otherwise, any blocking pair (m, w) must have 0 = um(μ) < U (m, w) = 1, 0 = v w(μ) <
V (m, w) = 1 and (m, w) /∈ μ. Thus, if μ contains one or both of the edges (m, w ′) and (m′, w) for some w ′ = w and 
m′ = m, then we must have that U (m, w ′) = 0 and/or V (m′, w) = 0. By our definition of weights, this would imply that 
γ (m, w ′) = 1 and/or γ (m′, w) = 1. We can now replace one or both of these edges with the edge (m, w), which has weight 
γ (m, w) = 2 + 1/n2, and obtain a new matching with strictly larger weight—a contradiction. �

The proof of Theorem 4 can be easily extended to the non-bipartite setting (also known as the stable roommates problem) 
to compute an optimal stable fractional matching with binary valuations.

Next, we consider general valuations and show how to exploit stable integral matchings to get an approximate solution 
for Optimal Stable Fractional Matching. Let σmax and σmin denote the largest and the smallest non-zero valuation among 
all agents in I , respectively. We call a man-woman pair (m, w) light if either U (m, w) = 0 or V (m, w) = 0, and heavy
otherwise. Given an SMC instance I as input, our algorithm computes a stable integral matching for I , say μ, in two steps: 
First, it computes a stable integral matching μ1 using only the heavy pairs (and taking into account the stability constraints 
in heavy pairs only). Then, it completes the solution with a matching μ2 of maximum welfare using the light pairs subject 
to feasibility constraints, i.e., using light pairs that do not share any agents with the pairs in μ1. The light pairs impose no 
additional constraints on stability, so the resulting matching is stable.

We will show that μ has approximation ratio 1 + σmax/σmin (recall that σmax and σmin are the largest and the smallest 
non-zero valuations, respectively, in the instance I). Let μopt be an optimal matching for I . Also, let μopt

1 be the set of pairs 
of μopt that share an agent with some pair of μ1, i.e., μopt

1 := {(m, w) ∈ μopt : at least one of m or w is matched in μ1}. By 
definition of μ2, we have W(μ2) ≥W(μopt \ μ

opt
1 ). To complete the proof, we will need the following lemma.

Lemma 2. W(μ1 \ μ
opt
1 ) ≥ (1 + σmax/σmin)−1 W(μ

opt
1 \ μ1).

Proof. Our proof constructs a mapping in which every pair (m, w) ∈ μ
opt
1 \ μ1 is mapped to one of its agents, whom we 

will call the witness of the pair. The mapping is such that the utility of the witness in the matching μ1 \ μ
opt
1 is at least 

(1 + σmax/σmin)−1 (U (m, w) + V (m, w)). Note that once we establish the said mapping, the proof will follow, since each 
agent can be the witness of at most one pair of μopt

1 \ μ1 and W(μ1 \ μ
opt
1 ) is at least the total utility of the witnesses in 

μ1 \ μ
opt
1 .

Consider a light pair (m, w) ∈ μ
opt
1 \ μ1. The witness is an agent (m or w) who also belongs to a pair of μ1 \ μ

opt
1 ; such 

an agent certainly exists by the definition of μopt
1 . Since all pairs of μ1 \ μ

opt
1 are heavy, the utility of the witness of (m, w)

in μ1 \ μ
opt
1 is at least σmin = σmin

σmax
(0 + σmax) ≥ (1 + σmax/σmin)−1 (U (m, w) + V (m, w)), since (m, w) is light.

Now consider a heavy pair (m, w) ∈ μ
opt
1 \ μ1. If μ1 contains a pair (m, w ′) with U (m, w ′) ≥ U (m, w), select agent m to 

be the witness, otherwise select agent w . Note that in the latter case, stability of μ1 implies the existence of (m′, w) ∈ μ1
such that V (m′, w) ≥ V (m, w). Hence, the utility of the witness of (m, w) in μ1 \ μ

opt
1 is at least min{U (m, w), V (m, w)}, 

which, in turn, is at least (1 + σmax/σmin)−1 (U (m, w) + V (m, w)). �
Now, Lemma 2 gives the desired approximation ratio, as follows:

W(μ) = W(μ1) +W(μ2) = W(μ1 \ μ
opt
1 ) +W(μ1 ∩ μ

opt
1 ) +W(μ2)

≥ (1 + σmax/σmin)−1 W(μ
opt
1 \ μ1) +W(μ

opt
1 ∩ μ1) +W(μopt \ μ

opt
1 )

≥ (1 + σmax/σmin)−1 W(μopt).

For ternary valuations in {0, 1, α}, the above algorithm gives a (1 + α)-approximation. An improved approximation for 
ternary valuations can be achieved using the following modification: When computing the stable integral matching, re-
11
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solve ties in favour of the pairs (m, w) with the highest U (m, w) + V (m, w). The next lemma establishes an improved 
approximation ratio of max{2, α}.

Lemma 3. The modified algorithm for SMC instances with ternary valuations in {0, 1, α} satisfies W(μ1 \μ
opt
1 ) ≥ min{ 1

2 , 1
α }W(μ

opt
1 \

μ1).

Proof. For a pair (m, w) of matching μ
opt
1 \ μ1, we use the term neighborhood to refer to the pairs of μ1 \ μ

opt
1

that use agent m or w . We will show that the total utility from pairs in the neighborhood of (m, w) is at least 
min{1, 2/α} (U (m, w) + V (m, w)). Since each pair of μ1 \μ

opt
1 can be in the neighborhood of at most two pairs of μopt

1 \μ1, 
this will give us the desired inequality.

Indeed, by the particular way we resolve ties in the ordinal preferences before computing the matching μ1, a heavy pair 
(m, w) in μopt

1 \ μ1 must have a pair of utility at least U (m, w) + V (m, w) in its neighborhood. A light pair (m, w) has 
U (m, w) + V (m, w) ≤ α and certainly has a heavy pair of utility at least 2 in its neighborhood. �

The above discussion is summarized in the following statement.

Theorem 5. There is a polynomial-time algorithm which, given an SMC instance I with an optimal matching μopt, com-
putes a stable integral matching μ with W(μ) ≥ min{ 1

2 , 1
α }W(μopt) if I has ternary valuations in {0, 1, α}, and W(μ) ≥

(1 + σmax/σmin)−1 W(μopt) in general, where σmax and σmin denote the highest and lowest non-zero valuation in I , respectively.

We conclude this section by considering approximate stability. For general valuations, we present a polynomial-time 
1/ε-approximation algorithm for Optimal ε-Stable Fractional Matching, which constructs an ε-stable fractional matching 
with a small support by combining an optimal matching with a stable integral matching.

Theorem 6. There is a polynomial-time algorithm that given any SMC instance I = 〈M, W , U , V 〉 and any rational ε ∈ [0, 1], com-
putes a fractional matching μ that is ε-stable for I such that W(μ) ≥ εW(μopt), where μopt is an optimal matching for I .

Proof. Let μs be any stable integral matching and μopt be an optimal matching for I . Note that both μs and μopt can be 
computed in polynomial time. We will show that μ := (1 − ε)μs + εμopt satisfies the desired properties. Indeed, W(μ) =
(1 − ε)W(μs) + εW(μopt) ≥ εW(μopt). Furthermore, since μs is stable, we have that for any man-woman pair (m, w) ∈
M × W , either um(μs) ≥ U (m, w) or v w(μs) ≥ V (m, w). The former condition implies that um(μ) ≥ (1 − ε)um(μs) ≥ (1 −
ε)U (m, w), while the latter condition gives v w (μ) ≥ (1 − ε)V (m, w). Either way, the pair (m, w) is ε-stable. �

In particular, Theorem 6 shows that a 1
2 -stable fractional matching with welfare at least half of that of an optimal 

fractional matching (and therefore, that of an optimal stable fractional matching) can be computed in polynomial time. 
In Appendix D, we provide a slightly stronger welfare guarantee: There is a polynomial-time algorithm that computes a 
1
2 -stable fractional matching with welfare at least that of an optimal (exactly) stable fractional matching.

5. Hardness of approximation

In this section, we present our inapproximability statements, which are by far the technically most involved results in 
the paper. We present polynomial-time reductions which, given a 3SAT formula φ of a particular structure, construct SMC
instances that simulate the evaluation of φ for every variable assignment. The constructed SMC instances consist of several 
gadgets including an accumulator. The simulation of the evaluation of φ by the SMC instance is such that:

(a) when φ has a satisfying assignment, there is a stable (or ε-stable) fractional matching where the contribution of the 
agents in the accumulator gadget to the welfare can be large and dominates the contribution from the remaining SMC
instance, and

(b) when φ is not satisfiable, the contribution of the accumulator and, subsequently, the total welfare of any stable (or 
ε-stable) fractional matching is very small.

Hence, distinguishing between SMC instances with stable (or ε-stable) fractional matchings of very high and very low wel-
fare would allow us to decide 3SAT. We have two inapproximability statements: Theorem 7 for Optimal Stable Fractional 
Matching and Theorem 8 for Optimal ε-Stable Fractional Matching.

Theorem 7. For every constant δ > 0, it is NP-hard to approximate Optimal Stable Fractional Matching for SMC instances with 
ternary valuations in {0, 1, α}to within a factor of (i) α − 1/2 − δ if α =O(n), and (ii) 	(n1−δ) otherwise.

Theorem 8. For any constant ε ∈ (0, 0.03] and δ > 0, it is NP-hard to approximate Optimal ε-Stable Fractional Matching to 
within a factor of 1/ε − δ.
12
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Fig. 5. (a) The variable gadget corresponding to the variable x. (b) The clause gadget corresponding to the clause c and its CA-connector (mc , wc).

We will prove Theorem 7 here; the proof of Theorem 8, which uses similar gadgets but is slightly more involved, appears 
in Appendix C. Since the proof is long, we have divided it into three parts: the description of the reduction (Section 5.1), 
technical claims with gadget properties (Section 5.2), and the proof of the inapproximability result (Section 5.3).

5.1. The reduction

In particular, we present a polynomial-time reduction from 2P2N-3SAT, the special case of 3SAT consisting of 3-CNF 
clauses in which every variable appears four times: twice as a positive literal and twice as a negative one. 2P2N-3SAT 
is known to be NP-hard [58]. Our reduction takes as input an instance of 2P2N-3SAT consisting of N (boolean) variables 
x1, x2, . . . , xN , and a 3-CNF formula φ with L = 4N/3 clauses c1, c2, . . . , cL . Without loss of generality, we assume that each 
clause in φ consists of distinct literals.

Given the instance of 2P2N-3SAT, our reduction generates an instance I = 〈M, W , U , V 〉 of Optimal Stable Fractional 
Matching. As usual, we denote by n the number of men (or women) in I . We will use a positive integer parameter k
which will determine the size of n; in particular, n =O(N + k). We define I by referring to its graph representation, which 
consists of variable gadgets, clause gadgets, variable-clause connectors, an accumulator, and clause-accumulator connectors. For 
each gadget, we classify the edges (i.e., man-woman pairs and their valuations) into the following three types:

• man-heavy edges (m, w) with U (m, w) = α and V (m, w) = 0,
• woman-heavy edges (m, w) with U (m, w) = 0 and V (m, w) = α, and
• balanced edges (m, w) with U (m, w) = V (m, w) = 1.

Recall that any pair (m, w) that does not appear as an edge in the graph representation has U (m, w) = V (m, w) = 0.
The instance I has a variable gadget for every variable x, which consists of five men mx

1, mx
2, ex

1, ex
2, ex

3, four women wx
1, 

wx
2, f x

1 , f x
2 and the ten balanced edges (ex

1, f x
1 ), (mx

1, f
x
1 ), (mx

1, w
x
1), (ex

3, w
x
1), (ex

3, w
x
2), (mx

2, w
x
2), (mx

2, f
x
2 ), (ex

2, f
x
2 ), (mx

1, w
x
2), 

and (mx
2, w

x
1), as shown in Fig. 5a.

For every clause c, instance I has a clause gadget with three men mc , ec
1, ec

2, three women wc
1, wc

2, wc
3, and the nine 

balanced edges between them, as shown in Fig. 5b.
For every appearance of a literal in a clause, there is a variable-clause connector (or VC-connector). The structure of VC-

connectors depends on whether they correspond to positive or negative literals and the value of α. In each case, we identify 
one edge of the VC-connector as the input, and either one or two edges as the output.

Specifically, for every positive literal x whose i-th appearance (i ∈ {1, 2}) is as the j-th literal ( j ∈ {1, 2, 3}) of clause c, I
has a VC-connector defined as follows:

• When α ≥ 2, the VC-connector consists of a single woman-heavy edge between mx
i (from the variable gadget corre-

sponding to variable x) and wc
j (from the clause gadget corresponding to clause c), as shown in Fig. 6a. This edge is 

simultaneously the input and the output edge of the VC-connector.
• When α ∈ (3/2, 2), the VC-connector consists of woman wx,c , man mx,c , the woman-heavy edges (mx

i , w
x,c) and 

(mx,c, wc
j), and the balanced edge (mx,c, wx,c), as shown in Fig. 6b. Here, (mx

i , w
x,c) is the input and (mx,c, wc

j) is 
the output edge.

For every negative literal x whose i-th appearance (i ∈ {1, 2}) is as the j-th literal ( j ∈ {1, 2, 3}) of clause c, I has a VC-
connector defined as follows:
13
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Fig. 6. VC-connectors corresponding to clause c and positive literal x for (a) α ≥ 2 and (b) α ∈ (3/2, 2), and to clause c and negative literal x for (c) α ≥ 2
and (d) α ∈ (3/2, 2).

• When α ≥ 2, the VC-connector consists of man mx,c , woman wx,c , the man-heavy edge (mx,c, wx
i ), the balanced edge 

(mx,c, wx,c), and the woman-heavy edge (mx,c, wc
j), as shown in Fig. 6c. Here, (mx,c, wx

i ) is the input and (mx,c, wc
j) is 

the output edge.
• When α ∈ (3/2, 2), the VC-connector consists of three men mx,c

1 , mx,c
2 , mx,c

3 , three women wx,c
1 , wx,c

2 , wx,c
3 , the man-

heavy edges (mx,c
1 , wx

i ), (mx,c
3 , wx,c

1 ), (mx,c
3 , wx,c

2 ), the woman-heavy edges (mx,c
1 , wx,c

2 ), (mx,c
2 , wc

j), (mx,c
3 , wc

j), and the 

balanced edges (mx,c
1 , wx,c

1 ), (mx,c
2 , wx,c

2 ), (mx,c
3 , wx,c

3 ), as shown in Fig. 6d. In this case, the VC-connector has one input 
edge (mx,c

1 , wx
i ) and two output edges (mx,c

2 , wc
j) and (mx,c

3 , wc
j).

The accumulator (Fig. 7) of instance I has different structure depending on the value of α. Its size depends on the 
positive integer parameter k.

• When α ≥ 2 (see Fig. 7a), the accumulator consists of man mi and woman wi for all i ∈ {1, . . . , k}, men e1
i and e2

i
and woman f 1

i for all i ∈ {1, . . . , k − 1}, man e3
i and women f 2

i and f 3
i for all i ∈ {2, . . . , k}, and woman wc for every 

clause c of φ. The edges comprise of man-heavy edges (mi, wi−1) and (e3
i , f

2
i ) for all i ∈ {2, . . . , k} and (e2

i , wi) for all 
i ∈ {1, . . . , k − 1}, balanced edges (m1, wc) for every clause c, which we call tine edges, (e1

i , wi) for all i ∈ {1, . . . , k − 1}, 
and (mi, f 2

i ) for all i ∈ {2, . . . , k}, and woman-heavy edges (mi, wi) for all i ∈ {1, . . . , k}, (e1
i , f

1
i ) for all i ∈ {1, . . . , k − 1}, 

and (mi, f 3
i ) for all i ∈ {2, . . . , k}.

• When α ∈ (3/2, 2) (see Fig. 7b), the accumulator consists of man mi , woman wi for all i ∈ {1, . . . , k}, man e1
i and woman 

f 1
i for all i ∈ {1, . . . , k − 1}, man e2

i and woman f 2
i for all i ∈ {2, . . . , k}, and woman wc for every clause c of φ. The 

edges comprise of man-heavy edges (mi, wi−1) and (e2
i , f

2
i ) for all i ∈ {2, . . . , k} and (mi, f 2

i−1) for all i ∈ {3, . . . , k}, the 
balanced edges (m1, wc) for every clause c (tine edges), (e1

i , wi) for all i ∈ {1, . . . , k −1} and (mi, f 2
i ) for all i ∈ {2, . . . , k}, 

and the woman-heavy edges (mi, wi) for all i ∈ {1, . . . , k}, and (e1
i , f

1
i ) and (e1

i , wi+1) for all i ∈ {1, . . . , k − 1}.

Finally, instance I has a clause-accumulator connector (or CA-connector) for every clause c of φ consisting of the woman-
heavy edge (mc, wc) between the man mc (from the clause gadget corresponding to clause c) and woman wc (from the 
accumulator); see Fig. 5b. Notice that the above construction has more women than men. To restore balance, we pad the 
instance with extra (isolated) men that neither value nor are valued by any other agent. This completes the construction of 
the reduced instance.

5.2. Gadget properties

We will now prove several important properties (Claims 1-4) of our construction.
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Fig. 7. The accumulator for the cases (a) α ≥ 2 and (b) α ∈ (3/2,2).

Claim 1. For every variable x, a stable fractional matching μ satisfies at least one of the following:

(1) μ(mx
1, w

x
1) + μ(mx

1, w
x
2) + μ(mx

1, f
x
1 ) = 1 and μ(mx

2, w
x
1) + μ(mx

2, w
x
2) + μ(mx

2, f
x
2 ) = 1.

(2) μ(mx
1, w

x
1) + μ(mx

2, w
x
1) + μ(ex

3, w
x
1) = 1 and μ(mx

1, w
x
2) + μ(mx

2, w
x
2) + μ(ex

3, w
x
2) = 1.

Proof. Suppose, for contradiction, that for some i, j ∈ {1, 2}, we have μ(mx
i , w

x
1) + μ(mx

i , w
x
2) + μ(mx

i , f
x
i ) < 1 and 

μ(mx
1, w

x
j) + μ(mx

2, w
x
j) + μ(ex

3, w
x
j) < 1. Then, both mx

i and wx
j will have utility strictly less than 1 in μ, and thus the 

pair (mx
i , w

x
j) would be blocking. �

We remark that the two conditions in the statement of Claim 1 affect the weight of the input edges of the VC-connectors 
that are attached to the variable gadget in any stable fractional matching. In particular, condition (1) implies that the weight 
assigned to the input edges of the VC-connectors that correspond to the two appearances of the positive literal x in clauses 
must be 0. To see why, observe that these input edges are incident to nodes mx and mx , and the total weight of all edges 
1 2
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incident to each of these nodes cannot exceed 1. Condition (2) has a similar implication for the edges associated with the 
negative literal x.

Claim 2. Any stable fractional matching that assigns a weight of 0 to the input edge of a VC-connector must assign a weight of 0 to its 
output edge(s) as well.

Proof. For α ≥ 2, the claim holds trivially for VC-connectors corresponding to positive literals (Fig. 6a). Consider a VC-
connector corresponding to a negative literal x and a clause c containing it (Fig. 6c). Observe that, besides the input edge 
(mx,c, wx

i ), the edge (mx,c, wx,c) is the only balanced or man-heavy edge that is incident to man mx,c and the only balanced 
(or woman-heavy) edge incident to woman wx,c . Hence, stability of the edge (mx,c, wx,c) requires a weight of 1 assigned to 
it when the weight assigned to input edge (mx,c, wx

i ) is 0. Then, the output edge (mx,c, wc
j), which is also incident to the 

node mx,c , must have a weight of 0 as well.
We now consider the case α ∈ (3/2, 2). First consider a VC-connector corresponding to a positive literal x and a clause 

c containing it (Fig. 6b). The edge (mx,c, wx,c) is the only balanced or man-heavy edge that is incident to man mx,c and, 
besides the input edge (mx

i , w
x,c), the only balanced (or woman-heavy) edge incident to woman wx,c . Hence, stability of 

edge (mx,c, wx,c) requires a weight of 1 assigned to it when the weight assigned to edge (mx
i , w

x,c) is 0. Then, the output 
edge (mx,c, wc

j), which is also incident to node mx,c , must have a weight of 0 as well.
Finally, consider a VC-connector corresponding to a negative literal x and a clause c containing it (Fig. 6d). Observe 

that (mx,c
1 , wx,c

1 ) is the only balanced or woman-heavy edge that is incident to woman wx,c
1 and, besides the input edge 

(mx,c
1 , wx

i ), the only balanced or man-heavy edge incident to man mx,c
1 . Also, (mx,c

2 , wx,c
2 ) is the only balanced or man-

heavy edge that is incident to man mx,c
2 and, besides edge (mx,c

1 , wx,c
2 ), the only balanced or woman-heavy edge to woman 

wx,c
2 . Furthermore, (mx,c

3 , wx,c
3 ) is the only balanced or man-heavy edge that is incident to woman wx,c

3 and, besides edges 
(mx,c

3 , wx,c
1 ) and (mx,c

3 , wx,c
2 ), the only balanced or man-heavy edge incident to man mx,c

3 .

Hence, stability of edge (mx,c
1 , wx,c

1 ) requires a weight of 1 assigned to it when the weight assigned to edge (mx,c
1 , wx

i ) is 
0. Then, edges (mx,c

1 , wx,c
2 ) and (mx,c

3 , wx,c
1 ) must have a weight of 0. Then, stability of edge (mx,c

2 , wx,c
2 ) requires a weight of 

1 assigned to it and the edge (mx,c
3 , wx,c

2 ) and the output edge (mx,c
2 , wc

j) must have a weight of 0. Then, stability of edge 

(mx,c
3 , wx,c

3 ) requires a weight of 1 assigned to it. Hence, the output edge (mx,c
3 , wc

j) must have a weight of 0 as well. �
Claim 3. Any stable fractional matching that assigns a weight of 0 to all output edges of the VC-connectors of clause c must assign a 
weight of 0 to the CA-connector of clause c as well.

Proof. Let 
1, 
2, and 
3 be the literals of clause c. Consider, for the sake of contradiction, a stable fractional matching that 
assigns (1) a weight of 0 to all output edges of the VC-connectors corresponding to literals 
i and clause c, and (2) strictly 
positive weight to edge (mc, wc) of the CA-connector for clause c. Note that condition (2) implies that the total weight on 
the edges (mc, wc

1), (mc, wc
2) and (mc, wc

3) is strictly smaller than 1. Since these are the only balanced or man-heavy edges 
incident to man mc , the stability of these edges is guaranteed by a utility of (at least) 1 for each of the agents wc

1, wc
2, and 

wc
3.

Note that besides the output edges of the VC-connectors, the edges (ec
1, wc

i ), (ec
2, w

c
i ), and (mc, wc

i ) are the only balanced 
or woman-heavy edges incident to agent wc

i for all i ∈ {1, 2, 3}. Along with condition (1), this implies that the weight 
assigned to these three edges is at least 1. Hence, the total weight on the nine edges of the clause gadget is at least 3, i.e., 
strictly more than 2 for the six edges incident to men ec

1 and ec
2, violating the definition of a fractional matching. �

Claim 4. Any stable fractional matching that assigns a weight of 0 to some CA-connector must assign a total weight of 1 to the tine 
edges and a weight of 1 to every balanced edge of the accumulator.

Proof. Assume that a weight of 0 has been assigned to the edge (mc′
, wc′

) of the CA-connector corresponding to some 
clause c′ . Since this is the only woman-heavy edge that is incident to agent wc′

and there is no man-heavy edge incident 
to agent m1, stability on the edge (m1, wc′

) requires that the total weight of the tine edges (m1, wc) (for every clause c) 
is (at least) 1. Hence, the weight of the edge (m1, w1) is 0. We will complete the proof by distinguishing between the two 
different accumulator structures, depending on whether α ≥ 2 or α ∈ (3/2, 2).

When α ≥ 2, it suffices to show that for all i ∈ {1, . . . , k − 1}, if the weight of edge (mi, wi) is 0, then the weight of the 
balanced edges (e1

i , wi) and (mi+1, f 2
i+1) is 1 and the weight of edge (mi+1, wi+1) is 0. Indeed, observe that, edge (e1

i , wi)

is the only balanced or man-heavy edge incident to man e1
i and, besides edge (mi, wi), the only balanced or woman-heavy 

edge incident to woman wi . Hence, the balanced edge (e1
i , wi) must have a weight of 1 and the edge (mi+1, wi) a weight 

of 0.
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Then, edge (mi+1, f 2
i+1) is the only balanced or woman-heavy edge incident to woman f 2

i+1 and, besides edge (mi+1, wi), 
the only balanced or man-heavy edge incident to man mi+1. Hence, the balanced edge (mi+1, f 2

i+1) must have a weight of 
1 and the edge (mi+1, wi+1) a weight of 0.

When α ∈ (3/2, 2), it suffices to show that for all i ∈ {1, . . . , k − 1}, if the weight of the edge (mi, wi) (and, if they exist, 
the edges (e1

i−1, wi) and (mi+1, f 2
i )) is 0, then the weight of the balanced edges (e1

i , wi) and (mi+1, f 2
i+1) is 1, and the 

weight of the edges (mi+1, wi+1) and (e1
i , wi+1) (and, if it exists, the edge (mi+2, f 2

i+1)) is 0. Indeed, observe that the edge 
(e1

i , wi) is the only balanced or man-heavy edge incident to man e1
i . Furthermore, in addition to the edge (mi, wi) (and, 

if it exists, the edge (e1
i−1, wi)), it is the only balanced or woman-heavy edge incident to woman wi . Hence, the balanced 

edge (e1
i , wi) must have a weight of 1, and the edge (mi+1, wi) (and, if it exists, the edge (e1

i , wi+1)) must have a weight of 
0. Then, the edge (mi+1, f 2

i+1) is, besides (mi+1, f 2
i ) and (mi+1, wi), the only balanced or man-heavy edge incident to man 

mi+1, and the only balanced or woman-heavy edge incident to woman f 2
i+1. Hence, the balanced edge (mi+1, f 2

i+1) must 
have a weight of 1, and the edge (mi+1, wi+1) (and, if it exists, the edge (mi+2, f 2

i+1)) must have a weight of 0. �
5.3. Proof of inapproximability

Lemma 4. If formula φ is not satisfiable, then any stable fractional matching of I has welfare at most 80αN + 4(k − 1).

Proof. We will first show that if φ is not satisfiable, then any stable fractional matching of I assigns weight 0 to some 
CA-connector. For the sake of contradiction, consider a stable fractional matching that assigns a strictly positive weight to 
all CA-connectors. We will construct a truth assignment for the formula φ (contradicting the assumption of the lemma) by 
repeating the following process for every clause c of φ: Let 
 be a literal that appears in c such that the output edge(s) of 
the VC-connector, that corresponds to the appearance of 
 in c, have strictly positive total weight. By Claim 3, such a literal 
must exist. We set 
 to 1 (true). For every variable that has not received a value in this way, we arbitrarily set it to 1.

The above assignment satisfies all the clauses. To show that it is also valid, we need to argue that there is no variable x
such that both literals x and x have been set to 1. Assume, to the contrary, that literal x is set to 1 due to its appearance 
in a clause c1, and literal x is set to 1 due to its appearance in a different clause c2. Thus, in the above assignment, the 
output edge(s) of the VC-connector between the literal x and the clause c1, as well as the VC-connector between the literal 
x and the clause c2 have strictly positive (total) weight. By Claim 2, the input edges of both VC-connectors also have strictly 
positive weight. Let i1, i2 ∈ {1, 2} be such that the i1-th appearance of x is in the clause c1 and the i2-th appearance of x is 
in the clause c2. Therefore, the said input edges are incident to the nodes mx

i1
and wx

i2
. Using Claim 1, we get that the total 

weight on the edges incident to one of mx
i1

or wx
i2

exceeds 1, contradicting feasibility. Thus, the above assignment must be 
valid, which, in turn, implies that any stable fractional matching assigns weight 0 to some CA-connector.

By Claim 4, the contribution of the accumulator to the welfare is exactly 4k − 2 (2 from the tine edges plus 2 from each 
balanced edge). Let us now consider the contribution of the edges that do not belong to the accumulator. This comprises of

• a total value of 20 for the ten balanced edges of each of the N variable gadgets,
• a total value of α (respectively, 2 +2α) for the edges of each of the 2N VC-connectors corresponding to a positive literal 

when α ≥ 2 (respectively, α ∈ (3/2, 2)),
• a total value of 2 + 2α (respectively, 6 + 6α) for the edges of each of the 2N VC-connectors corresponding to a negative 

literal when α ≥ 2 (respectively, α ∈ (3/2, 2)),
• a total value of 18 + α for the nine balanced edges of each of the 4N/3 clause gadgets and their corresponding CA-

connectors.

It can be easily seen that 80αN − 2 is a (loose) upper bound on the total value from these edges. �
Lemma 5. If φ is satisfiable, then there exists a stable fractional matching of I with welfare at least 4(k − 1)(α − 1/2).

Proof. Starting from a satisfying assignment for φ, we will construct a stable fractional matching μ in which the welfare of 
the accumulator gadget is at least 4(k − 1)(α − 1/2).

Variable gadgets. For the edges of the variable gadget of the variable x, μ is defined as:

• If x is true, then μ(mx
1, w

x
1) = μ(ex

3, w
x
1) = μ(ex

3, w
x
2) = μ(mx

2, w
x
2) = 1/2, μ(ex

1, f
x
1 ) = μ(ex

2, f
x
2 ) = 1, and the remaining 

edges have weight 0.
• If x is false, then μ(ex

3, w
x
1) = μ(ex

3, w
x
2) = 1/2, μ(mx

1, f
x
1 ) = μ(mx

2, f
x
2 ) = 1, and the remaining edges have weight 0.

Clause gadgets and CA-connectors. For each clause, select one of the true literals (tie-break arbitrarily) and call it active. Note 
that each clause has an active literal in a satisfying assignment. Consider the clause c, and let 
i be its active literal for some 
17
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i ∈ {1, 2, 3}. Also, let i1, i2 ∈ {1, 2, 3} \ {i} denote the other two indices. Set μ(ec
1, w

c
i1
) = μ(ec

2, w
c
i2
) = 1, and set the weight 

of the remaining balanced edges to 0. Assign a weight of 1 to the CA-connector, i.e., μ(mc, wc) = 1.

VC-connectors. For every non-active VC-connector, set the weight of its balanced edges (if any) to 1 and the weight of the 
remaining edges to 0. For every active VC-connector corresponding to the i-th appearance of the positive literal x as the 
j-th literal of clause c (i ∈ {1, 2}, j ∈ {1, 2, 3}), the weights of its edges are as follows:

• When α ≥ 2, we set μ(mx
i , w

c
j) = 1/2.

• When α ∈ (3/2, 2), we set μ(mx
i , w

x,c) = 1/2, μ(mx,c, wx,c) = 1 − α/2, and μ(mx,c, wc
j) = 1/α.

For every active VC-connector corresponding to the i-th appearance of the negative literal x as the j-th literal of clause 
c (i ∈ {1, 2}, j ∈ {1, 2, 3}), the weights of its edges are as follows:

• When α ≥ 2, we set μ(mx,c, wx
i ) = μ(mx,c, wc

j) = 1/2 and μ(mx,c, wx,c) = 0.

• When α ∈ (3/2, 2), we set μ(mx,c
1 , wx

i ) = 1/2, μ(mx,c
1 , wx,c

1 ) = 1 − α/2, μ(mx,c
1 , wx,c

2 ) = (α − 1)/2, μ(mx,c
2 , wx,c

2 ) = 1 −
(α2 − α)/2, μ(mx,c

2 , wc
j) = 2/α − 1, μ(mx,c

3 , wx,c
1 ) = 1/α, μ(mx,c

3 , wx,c
2 ) = μ(mx,c

3 , wx,c
3 ) = 0, μ(mx,c

3 , wc
j) = 1 − 1/α.

Accumulator. We set μ(m1, wc) = 0 for every tine edge (m1, wc) of the accumulator. Furthermore:

• When α ≥ 2, we set μ(mi, wi) = 1/α for all i ∈ {1, . . . , k}, μ(e2
i , wi) = 1 − 2/α, μ(mi+1, wi) = 1/α, μ(e1

i , f
1
i ) = 1, 

μ(e1
i , wi) = 0 for all i ∈ {1, . . . , k − 1}, μ(mi, f 2

i ) = 0, μ(mi, f 3
i ) = 1 − 2/α, and μ(e3

i , f
2
i ) = 1 for all i ∈ {2, . . . , k}. 

Among these, any edge with a positive weight is either man- or woman-heavy, and hence, its contribution to the social 
welfare is α times its weight. It can be verified that the total contribution is 4(k − 1)(α − 1/2) + 1.

• When α ∈ (3/2, 2), we set μ(m1, w1) = 1/α, μ(m2, w2) = α + 1/α − 2, μ(mi, wi) = 1 − 1/α for all i ∈ {3, . . . , k}, 
μ(mi+1, wi) = 1 − 1/α for all i ∈ {1, . . . , k − 1}, μ(e1

i , wi) = 0 for all i ∈ {1, . . . , k − 1}, μ(m2, f 2
2 ) = 2 −α, μ(mi, f 2

i ) = 0
for all i ∈ {3, . . . , k}, μ(e1

1, f
1
1 ) = α − 1, μ(e2

2, f
2
2 ) = α − 2/α, μ(e2

k , f 2
k ) = 1, μ(e1

i , f
1
i ) = 2 − 2/α for all i ∈ {2, . . . , k − 1}, 

μ(e2
i , f

2
i ) = 2 − 2/α for all i ∈ {3, . . . , k − 1}, μ(e1

1, w2) = 2 − α, μ(e1
i , wi+1) = 2/α − 1 for all i ∈ {2, . . . , k − 1}, and 

μ(mi+1, f 2
i ) = 2/α −1 for all i ∈ {2, . . . , k −1}. Except for the balanced edge (m2, f 2

2 ), every edge with a positive weight 
among the ones listed above is either man- or woman-heavy, and hence, its contribution to the social welfare is α times 
its weight. It can be verified that the total contribution in this case is 4(k − 1)(α − 1/2) + 2α2 − 7α + 7.

In each case, the accumulator contributes at least 4(k − 1)(α − 1/2) to the social welfare, as desired.
The feasibility of μ can be verified by inspection. To see why μ is stable, note that we only need to check for the 

balanced edges, as the man- or woman-heavy edges and the remaining pairs do not impose any constraints on stability. For 
the balanced edges, stability is established by the following series of observations (we will use the term ‘stabilized by’ to 
denote that an agent’s utility is at least 1): The variable gadget for the variable x (Fig. 5a) is stabilized by the agents f x

1 , f x
2 , 

ex
3 along with mx

1, mx
2 (if x is true) or wx

1, wx
2 (if x is false). The clause gadget for clause c (Fig. 5b) with active index i (and 

non-active indices i1 and i2) is stabilized by the agents ec
1, ec

2, wc
i , wc

i1
, wc

i2
; in particular, the edge (mc, wc

i ) is stabilized 
by wc

i because an active literal triggers the woman-heavy edge in the VC-connector. A VC connector is stabilized by wx,c

(Fig. 6b), mx,c (Fig. 6c), or mx,c
1 , wx,c

2 , and mx,c
3 (Fig. 6d). Finally, the tine edges in the accumulator (Fig. 7) are stabilized 

by wc1 , . . . , wcL (because we trigger the CA-connector), and the remaining balanced edges are stabilized by wi ’s and mi ’s 
except for m1. Overall, μ is a feasible stable fractional matching. �

We are ready to prove Theorem 7. If α < N1+1/δ , we use our construction with any k satisfying k − 1 ≥ 20αN(α−1/2−δ)
δ

. It 
is easy to verify that the reduction is polynomial-time. Furthermore, from Lemma 4, we know that the welfare of μ when 
φ is not satisfiable is at most

80αN + 4(k − 1) ≤ 4(k − 1)δ

α − 1/2 − δ
+ 4(k − 1) = 4(k − 1)(α − 1/2)

α − 1/2 − δ
.

This number is at least α − 1/2 − δ times smaller than the welfare of μ when φ is satisfiable (Lemma 5). This establishes 
the inapproximability bound in part (i) of Theorem 7.

If α ≥ N1+1/δ , we use our construction with k = N1+1/δ . Once again, the reduction is polynomial-time, and the instance 
I has n = (N1+1/δ) men and women. Observe that α = 	(n), k = (n), and N = O(nδ). Hence, the welfare of μ when φ
is not satisfiable is at most

80αN + 4(k − 1) ≤ 80αN + 4N1+1/δ ≤ 84αN = O(αnδ).

On the other hand, the welfare of μ when φ is satisfiable is at least 4(k − 1)(α − 1/2), i.e., 	(αn). This establishes the 
bound in part (ii), and with it, completes the proof of Theorem 7.
18
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Strong stability (Definition 5)

Ex-post stability (Definition 6)

Fractional stability (Definition 7)

Stability (Definition 1)

Ordinal Preferences Cardinal Preferences

Fig. 8. Relationship between stability notions for fractional matchings under ordinal and cardinal preferences. A solid (respectively, dotted) arrow indicates 
that the implication holds (respectively, does not hold) in that direction. The implications for strict and weak preferences are denoted by red and blue 
arrows, respectively. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

6. Concluding remarks

We studied stable fractional matchings in a cardinal model and provided a number of computational and structural 
results. Going forward, it would be very interesting to resolve the complexity of Optimal Stable Fractional Matching

for the case when agents have strict cardinal preferences (i.e., the no-ties case). It would also be very interesting to see 
if stronger inapproximability results can be obtained for more general matching models, such as stable roommates [59]. 
Another relevant direction is to consider a stronger solution concept with blocking coalitions of any size (also known as the 
core), wherein the deviating agents can form a fractional matching among themselves to achieve a higher utility for each 
member of the coalition.
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Appendix A. Comparison with other notions of stability

In this section, we will discuss other notions of stability of fractional matchings that have been studied for ordinal 
preferences. For a detailed overview of these and other notions, we refer the reader to the work of Aziz and Klaus [46].

Given an SMC instance I = 〈M, W , U , V 〉 with cardinal preferences, we can define an ordinal instance Iord = 〈M, W , �〉
where �:= (�m1 , . . . , �mn , �w1 , . . . , �wn ) is a preference profile consisting of the ordinal preferences of the agents specified 
as weak total orders. Specifically, for every i ∈ {1, . . . , n}, �mi and �wi are weak total orders over the sets W and M , 
respectively, such that U (mi, w) ≥ U (mi, w ′) ⇔ w �mi w ′ and V (m, wi) ≥ V (m′, wi) ⇔ m �wi m′ . We will write w �m w ′ if 
w �m w ′ but not w ′ �m w . The relation m �w m′ is analogously defined.

Below we will discuss three notions of stability for fractional matchings—strong stability [11], fractional stability [40], and 
ex-post stability [11]—that were originally formulated in the context of strict ordinal preferences, and were subsequently 
studied for weak preferences by Aziz and Klaus [46].

The first notion called strong stability asserts that no pair of man and woman should positively engage with agents they 
like less than each other.
19
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Definition 5 (Strong stability [11]). A fractional matching μ is strongly stable if there are no m, m′ ∈ M and w, w ′ ∈ W such 
that μ(m, w ′) > 0, μ(m′, w) > 0, w �m w ′ , and m �w m′ .

Next, recall that a fractional matching can be interpreted as a lottery (or a probability distribution) over integral match-
ings. Under this interpretation, ex-post stability requires that every realization of this lottery should be stable.

Definition 6 (Ex-post stability [11]). A fractional matching μ is ex-post stable if it can be expressed as a convex combination 
of integral stable matchings.

The third notion, fractional stability, formalizes the idea that “if man m is matched with someone less preferred than 
woman w , then w should be matched with someone more preferred than m” as a linear constraint.

Definition 7 (Fractional stability [40]). A fractional matching μ is fractionally stable if for every (m, w) ∈ M × W ,

μ(m, w) +
∑

w ′∈W : w ′�m w

μ(m, w ′) +
∑

m′∈M:m′�wm

μ(m′, w) ≥ 1.

Notice that an integral matching satisfies the ordinal notions of strong (Definition 5), ex-post (Definition 6), or fractional 
(Definition 7) stability in Iord if and only if it satisfies the cardinal notion of stability (Definition 1) in I . Thus, the distinction 
between these notions is meaningful only for fractional matchings. The following observations describe the relationship 
between these notions (also refer to Fig. 8).

• It is known that strong stability implies ex-post stability even under weak ordinal preferences, but the converse is not 
true even under strict ordinal preferences [11,46]. Additionally, for strict preferences, ex-post stability is known to be 
equivalent to fractional stability [40,41,11,22], but for weak preferences, the former is strictly stronger [46].

• A stable matching (Definition 1) may not be fractionally stable (Definition 7) even under strict preferences. To see this, 
consider the fractional matching μ in Example 1, which was shown to be stable. For the pair (m1, w3), we have

μ(m1, w3) +
∑

w ′:w ′�m1 w3

μ(m1, w ′) +
∑

m′:m′�w3 �m1

μ(m′, w3) = 0 + 0 + 0.5 < 1,

implying that μ is not fractionally stable (and thus also not ex-post/strongly stable).

Remark 3. It is interesting to note the welfare implication of the above observation. Since fractionally stable matchings 
are equivalent to ex-post stable matchings under strict preferences, and since all integral stable matchings in Example 1
have social welfare of 7, it follows that the social welfare of any fractionally stable matching is also equal to 7. On the 
other hand, there exists a stable matching μ with a strictly higher welfare. This illustrates that fractionally stable (and, in 
particular, strongly stable) matchings can be strictly suboptimal in the cardinal model, further justifying the need to study 
the computational aspects of optimal stable matchings.

• Given an SMC instance I , a strongly stable (Definition 5) matching in the corresponding ordinal instance Iord can be 
shown to be stable (Definition 1) in the original instance I . Indeed, if μ is strongly stable in Iord, then for any pair 
(m, w) ∈ M × W , we have that either 

∑
w ′ :w�m w ′ μ(m, w ′) = 0 or 

∑
m′ :m�w m′ μ(m′, w) = 0. Suppose, without loss of 

generality, that the former holds. Then, the utility of man m in I is given by

um(μ) = U (m, w)μ(m, w) +
∑

w ′:w ′�m w

U (m, w ′)μ(m, w ′)

≥ U (m, w)

⎛
⎝μ(m, w) +

∑
w ′:w ′�m w

μ(m, w ′)

⎞
⎠

= U (m, w),

as desired.
• As mentioned previously in Remark 1, Narang and Narahari [55] have observed that the set of stable matchings is non-

convex even under strict cardinal preferences. Their counterexample involves the convex combination of integral stable 
matchings, and therefore also establishes that an ex-post stable (and hence also fractionally stable) matching may not 
be stable.
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Appendix B. Non-convexity of strong stability may not imply non-convexity of stability

In this section, we show that non-convexity of strong stability (Definition 5) might not imply the same for stability 
(Definition 1), even though, as observed in Appendix A, the former is a strictly stronger notion. To this end, we revisit 
the counterexample used by Aziz and Klaus [46] in establishing the non-convexity of the set of strongly stable matchings. 
Recall from Appendix A that a fractional matching μ is strongly stable if there are no m, m′ ∈ M and w, w ′ ∈ W such that 
μ(m, w ′) > 0, μ(m′, w) > 0, w �m w ′ , and m �w m′ .

The counterexample of Aziz and Klaus [46, Theorem 1], which in turn is adapted from [11, Example 2], consists of three 
men m1, m2, m3 and three women w1, w2, w3 with the following ordinal preferences:

m1 : w1 � w2 � w3 w1 : m2 � m3 � m1

m2 : w2 � w3 � w1 w2 : m3 � m1 � m2

m3 : w3 � w1 � w2 w3 : m1 � m2 � m3.

Consider the integral matchings μ(1) , μ(2) , and μ(3) defined as follows:

μ(1) := {(m1, w1), (m2, w2), (m3, w3)},
μ(2) := {(m1, w3), (m2, w1), (m3, w2)}, and

μ(3) := {(m1, w2), (m2, w3), (m3, w1)}.
Notice that μ(1) , μ(2) , and μ(3) are strongly stable (and therefore also stable). Also note that the fractional matching μ :=
1
3 μ(1) + 1

3 μ(2) + 1
3 μ(3) violates strong stability for the agents m1, m2 and w2, w3 since μ(m1, w3) > 0, μ(m2, w2) > 0, 

w2 �m1 w3 and m1 �w2 m2. That is, the convex combination of strongly stable integral matchings μ(1) , μ(2) , and μ(3) is not 
strongly stable.

Let us now consider an SMC instance I = 〈M, W , U , V 〉 for the same set of agents, i.e., M = {m1, m2, m3}, W =
{w1, w2, w3}, and the following valuations:

U =
⎡
⎣

2 1 0
0 2 1
1 0 2

⎤
⎦ and V =

⎡
⎣

0 1 2
2 0 1
1 2 0

⎤
⎦ .

Observe that the valuations in I are consistent with the aforementioned ordinal preferences. It is easy to see that the utility 
of each agent in μ is equal to 1, and that μ is stable for I .

Appendix C. Hardness for ε-stability

The proof of Theorem 8 follows along very similar lines to the proof of Theorem 7, again using a reduction from 2P2N-
3SAT.

C.1. The reduction

Starting from an instance of 2P2N-3SAT, we first preprocess and augment it in the following way. For each variable of 
the original instance, we create a copy-variable and, for each clause of the original instance, we create a copy-clause that 
contains the copy-variables corresponding to the variables of the original clause. Each variable and its copy are coupled 
variables and, similarly, each clause and its copy are coupled clauses.

Let the modified input consist of N (boolean) variables x1, x2, . . . , xN , and a 3-CNF formula φ with L = 4N/3 clauses c1, 
c2,. . . , c4N/3. Note that if φ is not satisfiable, then, due to the instance augmentation, there exist at least two clauses that 
are not satisfied.

We now proceed to describe the instance I = 〈M, W , U , V 〉 of Optimal ε-Stable Fractional Matching whose graph 
representation consists of variable gadgets, clause gadgets, VC-connectors, an accumulator, and CA-connectors. We remark 
that I is not an instance with ternary valuations as we use valuations from the set {0, 1, β, γ }. We set β = 2(1 − ε), and 
observe that, when ε < 0.03, we have that (3β2 + 4)ε < 1/2; the value of γ will be set later. Again, we denote by n the 
number of men (or women) in I; the following reduction is such that n = O(N).

For each gadget, we classify the edges into the following three types:

• balanced edges (m, w) with U (m, w) = V (m, w) = 1,
• man-heavy edges (m, w) with U (m, w) > 0 and V (m, w) = 0, and
• woman-heavy edges (m, w) with U (m, w) = 0 and V (m, w) > 0.
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Fig. 9. (a) The variable gadget corresponding to the variable x. (b) The clause gadget corresponding to the clause c and its CA-connector (mc , wc).
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Fig. 10. VC-connectors corresponding to (a) clause c and positive literal x, and (b) clause c and negative literal x.
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Fig. 11. The accumulator.

Any other pair (m, w) that does not appear as an edge in the graph representation has U (m, w) = V (m, w) = 0.
The instance I contains a variable gadget for every variable x, which consists of five men mx

1, mx
2, ex

1, ex
2, ex

3, four women 
wx

1, wx
2, f x

1 , f x
2 and the ten balanced edges (ex

1, f
x
1 ), (mx

1, f
x
1 ), (mx

1, w
x
1), (ex

3, w
x
1), (ex

3, w
x
2), (mx

2, w
x
2), (mx

2, f
x
2 ), (ex

2, f
x
2 ), 

(mx
1, w

x
2), and (mx

2, w
x
1) (see Fig. 9a).

For every clause c, instance I has a clause gadget with three men mc , ec
1, ec

2, three women wc
1, wc

2, wc
3, and the nine 

balanced edges between them (see Fig. 9b).
For every appearance of a literal in a clause, there is a variable-clause connector (or VC-connector) whose structure 

depends on whether it corresponds to a positive or a negative literal. In particular, for every positive literal x whose i-th 
appearance (i ∈ {1, 2}) is as the j-th literal ( j ∈ {1, 2, 3}) of clause c, instance I has a VC-connector that consists of a single 
woman-heavy edge between mx

i (from the variable gadget corresponding to variable x) and wc
j (from the clause gadget 

corresponding to clause c) such that U (mx
i , w

c
j) = 0 and V (mx

i , w
c
j) = β (see Fig. 10a). This edge is simultaneously the input 

and output edge of the VC-connector.
Similarly, for every negative literal x whose i-th appearance (i ∈ {1, 2}) is as the j-th literal ( j ∈ {1, 2, 3}) of clause c, 

instance I has a VC-connector that consists of man mx,c , woman wx,c , the man-heavy edge (mx,c, wx
i ) with U (mx,c, wx

i ) =
β and V (mx,c, wx

i ) = 0, the balanced edge (mx,c, wx,c), and the woman-heavy edge (mx,c, wc
j) with U (mx,c, wc

j) = 0 and 
V (mx,c, wc

j) = β (see Fig. 10b). Here, (mx,c, wx
i ) is the input and (mx,c, wc

j) is the output edge.
The accumulator gadget consists of man m1, woman w1 and woman wc for every clause c of φ. In addition, it contains 

the balanced edges (m1, wc) for every clause c, which we once again call tine edges and the woman-heavy edge (m1, w1)

with U (m1, w1) = 0 and V (m1, w1) = γ (see Fig. 11).
Finally, instance I contains a clause-accumulator connector (or CA-connector) for every clause c consisting of the 

woman-heavy edge (mc, wc) between the man mc (from the clause gadget corresponding to clause c) and woman wc

(from the accumulator) so that U (mc, wc) = 0 and V (mc, wc) = 1 (see Fig. 9b). Any other edge (m, w) is such that 
U (m, w) = V (m, w) = 0.
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Notice that the above construction has more women than men. To restore balance, we pad the instance with extra 
(isolated) men that neither value nor are valued by any other agent. This completes the construction of the reduced instance.

C.2. Gadget properties

We will now prove several important properties (Claims 5-8) of our construction.

Claim 5. For every variable x, an ε-stable fractional matching μ satisfies at least one of the following conditions:

(1) μ(mx
1, w

x
1) + μ(mx

1, w
x
2) + μ(mx

1, f
x
1 ) ≥ 1 − ε and μ(mx

2, w
x
1) + μ(mx

2, w
x
2) + μ(mx

2, f
x
2 ) ≥ 1 − ε.

(2) μ(mx
1, w

x
1) + μ(mx

2, w
x
1) + μ(ex

3, w
x
1) ≥ 1 − ε and μ(mx

1, w
x
2) + μ(mx

2, w
x
2) + μ(ex

3, w
x
2) ≥ 1 − ε.

Proof. Assume otherwise that, for some i, j ∈ {1, 2}, μ(mx
i , w

x
1) + μ(mx

i , w
x
2) + μ(mx

i , f
x
i ) < 1 − ε and μ(mx

1, w
x
j) +

μ(mx
2, w

x
j) + μ(ex

3, w
x
j) < 1 − ε. Then, since instance I contains no man-heavy edge (mx

i , w) and no woman-heavy edge 
(m, wx

j), both mx
i and wx

j have utility less than 1 − ε in μ and hence the pair (mx
i , w

x
j) is ε-blocking—a contradiction. �

As before, the two conditions in the statement of Claim 5 affect the weight of the input edges of the VC-connectors that 
are attached to the variable gadget in any ε-stable fractional matching. Thus, condition (1) implies that the weight assigned 
to each input edge of the VC-connectors that correspond to the two appearances of the positive literal x in clauses must be 
at most ε. To see why, observe that these input edges are incident to nodes mx

1 and mx
2, and the total weight of all edges 

incident to each of these nodes cannot exceed 1. Similarly, condition (2) implies that the weight assigned to each input 
edge of the VC-connectors that correspond to the two appearances of the negative literal x in clauses must be at most ε.

Claim 6. Any ε-stable fractional matching that assigns a weight of at most ε to the input edge of a VC-connector must assign a weight 
of at most βε to its output edge as well.

Proof. The claim holds trivially for VC-connectors corresponding to positive literals. Consider a VC-connector corresponding 
to a negative literal x and a clause c containing it, and let ζ ≤ ε be the weight assigned to the input edge (mx,c, wx

i ). Observe 
that, besides the input edge (mx,c, wx

i ), the edge (mx,c, wx,c) is the only balanced or man-heavy edge that is incident to 
man mx,c and the only balanced (or woman-heavy) edge incident to woman wx,c . Hence, ε-stability of edge (mx,c, wx,c)

requires a weight of at least 1 −ε −βζ assigned to it. Then, the output edge, which is also incident to node mx,c , must have 
a weight of at most ε + (β − 1)ζ ≤ βε. �
Claim 7. Any ε-stable fractional matching that assigns a weight of at most βε to each output edge of the VC-connectors corresponding 
to clause c must assign a weight of at most 3(β2 + 1)ε to the CA-connector of clause c as well.

Proof. Let 
1, 
2, and 
3 be the literals of clause c. Consider, for the sake of contradiction, an ε-stable fractional matching μ
that assigns (1) a weight of at most βε to each output edge of the VC-connectors corresponding to literals 
i and clause c, 
and (2) a weight of more than 3(β2 + 1)ε to edge (mc, wc) of the CA-connector for clause c. Note that condition (2) implies 
that the total weight on the edges (mc, wc

1), (mc, wc
2) and (mc, wc

3) is strictly smaller than 1 − 3(β2 + 1)ε. Since these are 
the only balanced or man-heavy edges incident to man mc , the ε-stability of these edges is guaranteed by a utility of (at 
least) 1 − ε for each of the agents wc

1, wc
2, and wc

3.
Note that besides the output edges of the VC-connectors, the edges (ec

1, wc
i ), (ec

2, w
c
i ), and (mc, wc

i ) are the only balanced 
or woman-heavy edges incident to agent wc

i for all i ∈ {1, 2, 3}. Along with condition (1), this implies that the weight 
assigned to these three edges is at least 1 − (β2 + 1)ε. Hence, the total weight on the nine edges of the clause gadget is 
at least 3 − 3(β2 + 1)ε, which, by the definition of β , is strictly more than 2 for the six edges incident to men ec

1 and ec
2, 

violating the definition of a fractional matching. �
Claim 8. Any ε-stable fractional matching that assigns a weight of at most 3(β2 + 1)ε to at least two CA-connectors must assign a 
total weight of 1 − ε to the tine edges and a weight of at most ε to the edge (m1, w1) of the accumulator.

Proof. Assume that a weight of at most 3(β2 + 1)ε has been assigned to the edges (mc1 , wc1 ) and (mc2 , wc2 ) of the CA-
connectors corresponding to some clauses c1 and c2. Since these are the only edges for which agents wc1 and wc2 have 
positive value, and there is no man-heavy edge incident to agent m1, stability on the edges (m1, wc1 ) and (m1, wc2 ) requires 
that the total weight of the tine edges (m1, wc) (for every clause c) is (at least) 1 − ε. Indeed, since by the definition of β
we have (3β2 + 4)ε < 1/2, it is not possible to guarantee stability of the edges (m1, wc1 ) and (m1, wc2 ) by assigning weight 
at least 1 − (3β2 + 4)ε to each of them so that both wc1 and wc2 have utility at least 1 − ε. Hence, the weight of the edge 
(m1, w1) of the accumulator is at most ε. �
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C.3. Proof of inapproximability

Lemma 6. If formula φ is not satisfiable, then any ε-stable fractional matching of I has welfare at most 56βN + γ ε.

Proof. We will first show that if φ is not satisfiable, then any ε-stable fractional matching of I assigns weight at most 
3(β2 +1)ε to at least two CA-connectors. For the sake of contradiction, consider an ε-stable fractional matching that assigns 
weight at most 3(β2 +1)ε to at most one CA-connector; let c be the relevant clause, if such a clause exists. We will construct 
a truth assignment for formula φ (contradicting the assumption of the lemma) by repeating the following process for every 
clause c′ = c of φ. Let 
 be a literal that appears in c′ such that the output edge of the VC-connector, that corresponds to 
the appearance of 
 in c′ , has weight greater than βε. Recall that such a literal exists by Claim 7. We set 
 to 1 (true). For 
every variable that has not received a value in this way, we arbitrarily set it to 1.

The above assignment satisfies all clauses except possibly for clause c. Since clause c is coupled with another clause ĉ
that is satisfied, it suffices to assign one of the variables appearing in c the same value as its corresponding coupled variable 
appearing in ĉ. To show that the assignment is also valid, we need to argue that there is no variable x such that both literals 
x and x have been set to 1. Assume otherwise that this is the case. Furthermore, assume that literal x was set to 1 due to 
its appearance in a clause c1, and that this is its i1-th appearance (with i1 ∈ {1, 2}). Also, literal x was set to 1 due to its 
appearance in a different clause c2, where x makes its i2-th appearance (again, i2 ∈ {1, 2}). Hence, the output edge of the 
VC-connector that corresponds to literal x and clause c1 (respectively, the VC-connector that corresponds to literal x and 
clause c2) has weight greater than βε. Then, by Claim 6, the input edges of both VC-connectors have weight greater than ε. 
As these input edges are incident to nodes mx

i1
and wx

i2
, Claim 5 yields that the total weight in the edges incident to some 

of the nodes mx
i1

and wx
i2

is strictly higher than 1, contradicting the definition of a fractional matching.

Since any ε-stable fractional matching assigns a weight of at most 3(β2 + 1)ε to at least two CA-connectors, by Claim 8, 
the contribution of the accumulator to the welfare is at most 2(1 − ε) + γ ε (2(1 − ε) from the tine edges plus γ ε from the 
accumulator). The upper bound follows by considering the sum of valuations of all agents for edges that do not belong to 
the accumulator. This sum consists of

• total value of 20 for the ten balanced edges of each of the N variable gadgets,
• total value of β for the edges of each of the 2N VC-connectors corresponding to a positive literal,
• total value of 2 + 2β for the edges of each of the 2N VC-connectors corresponding to a negative literal,
• total value of 19 for the nine balanced edges of each of the 4N/3 clause gadgets and their corresponding CA-connectors.

It can be easily seen that 56βN − 2(1 − ε) is a (loose) upper bound on the total value from these edges. �
Lemma 7. If φ is satisfiable, then there exists an ε-stable fractional matching on I that has welfare at least γ .

Proof. Consider an assignment of boolean values to the variables that satisfies φ. We construct an ε-stable fractional match-
ing μ in I so that the contribution of the accumulator gadget to the welfare is at least γ .

Variable gadgets. The weights on the edges of the variable gadget corresponding to variable x are:

• μ(mx
1, w

x
1) = μ(ex

3, w
x
1) = μ(ex

3, w
x
2) = μ(mx

2, w
x
2) = 1/2, μ(ex

1, f
x
1 ) = μ(ex

2, f
x
2 ) = 1, and μ(mx

1, f
x
1 ) = μ(mx

1, w
x
2) =

μ(mx
2, f

x
2 ) = μ(mx

2, w
x
1) = 0 if x is true, and

• μ(ex
3, w

x
1) = μ(ex

3, w
x
2) = 1/2, μ(mx

1, f
x
1 ) = μ(mx

2, f
x
2 ) = 1, μ(mx

1, w
x
1) = μ(mx

2, w
x
2) = μ(mx

1, w
x
2) = μ(mx

2, w
x
1) =

μ(ex
1, f

x
1 ) = μ(ex

2, f
x
2 ) = 0 if x is false.

Clause gadgets and CA-connectors. For every clause we select arbitrarily one of the true literals of the clause and call it active; 
since the assignment satisfies φ, there is certainly such a literal. Consider clause c and let 
i (with i ∈ {1, 2, 3}) be its 
active literal; let i1 and i2 be the indices from {1, 2, 3} than are different than i. We set μ(ec

1, wc
i1
) = μ(ec

2, w
c
i2
) = 1 and 

μ(ec
1, w

c
i ) = μ(ec

1, w
c
i2
) = μ(ec

2, w
c
i ) = μ(ec

2, w
c
i1
) = μ(mc, wc

i ) = μ(mc, wc
i1
) = μ(mc, wc

i2
) = 0. We also assign a weight of 1

to the CA-connector corresponding to c, i.e., μ(mc, wc) = 1.

VC-connectors. For every non-active VC-connector, we set the weight of its balanced edge, if it exists, to 1 and the weight 
of the remaining edges to 0. For every active VC-connector corresponding to the i-th appearance of the positive literal x as 
the j-th literal of clause c (i ∈ {1, 2}, j ∈ {1, 2, 3}), we set μ(mx

i , w
c
j) = 1/2.

For every active VC-connector corresponding to the i-th appearance of the negative literal x as the j-th literal of clause c
(i ∈ {1, 2}, j ∈ {1, 2, 3}), we set the weights of its edges as follows: μ(mx,c, wx

i ) = μ(mx,c, wc
j) = 1/2 and μ(mx,c, wx,c) = 0.

Accumulator. We set μ(m1, wc) = 0 for every tine edge (m1, wc) of the accumulator. Furthermore, we set μ(m1, w1) = 1. 
So, the contribution of the accumulator to the social welfare is γ , as desired.

It can be easily verified that the total weight of the edges that are incident to any node is at most 1. Hence, μ is a 
valid fractional matching. Regarding stability, it suffices to verify that either the man or the woman of a balanced pair has 
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a utility of at least 1 − ε. Note that we only need to check for the balanced edges, as the man- or woman-heavy edges 
and the remaining pairs do not impose any constraints on stability. For the balanced edges, stability is established by the 
following series of observations (we will use the term ‘stabilized by’ to denote that an agent’s utility is at least 1 − ε): The 
variable gadget for the variable x (Fig. 9a) is stabilized by the agents f x

1 , f x
2 , ex

3 along with mx
1, mx

2 (if x is true) or wx
1, wx

2
(if x is false). The clause gadget for clause c (Fig. 9b) with active index i (and non-active indices i1 and i2) is stabilized 
by the agents ec

1, ec
2, wc

i , wc
i1

, wc
i2

; in particular, the edge (mc, wc
i ) is stabilized by wc

i because an active literal triggers 
the woman-heavy edge in the VC-connector. A VC connector is stabilized by mx,c (Fig. 10b). Finally, the tine edges in the 
accumulator (Fig. 11) are stabilized by wc1 , . . . , wcL (because we trigger the CA-connector). Overall, μ is a feasible stable 
fractional matching. �

We are ready to prove Theorem 8. We select a value of γ such that γ ≥ 56βN(1/ε−δ)
εδ

. By Lemma 6, the welfare of μ if φ
was not satisfiable would be at most

56βN + γ ε ≤ γ εδ

1/ε − δ
+ γ ε = γ

1/ε − δ
.

By Lemma 7, we have that the welfare of μ if φ was not satisfiable would be at least 1/ε− δ times smaller than the welfare 
I could have if φ was satisfiable.

Appendix D. Approximation algorithm for 1
2 -stability

We will now provide a polynomial-time algorithm that computes a 1
2 -stable fractional matching with welfare at least 

that of an optimal (exactly) stable fractional matching. Notice that unlike Theorems 5 and 6, where the quality of the 
computed matching is compared to the optimal matching μopt, the guarantee in Theorem 9 is considerably weaker.

Theorem 9. Let I be an SMC instance and μ∗ be an optimal stable fractional matching for I . Then, a 1
2 -stable fractional matching μ

that satisfies W(μ) ≥W(μ∗) can be computed in polynomial time.

Proof. Consider the mixed integer linear program (OPT-Stab) from Section 2.1 for finding an optimal stable fractional 
matching for I . Relaxing the integrality constraint (8) to y(m, w) ∈ [0, 1] results in a linear program. Since a stable frac-
tional matching always exists (see Proposition 1), this relaxation is feasible. Let μ be a solution of the relaxed program. 
Since max{y(m, w), 1 − y(m, w)} ≥ 1

2 , we have that for every man-woman pair (m, w) ∈ M × W , either um ≥ 1
2 U (m, w) or 

v w ≥ 1
2 V (m, w), implying that μ is 1

2 -stable. It is also clear that W(μ) ≥ W(μ∗) since μ∗ satisfies (OPT-Stab). �
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